首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   5篇
  国内免费   14篇
化学   73篇
晶体学   1篇
力学   31篇
数学   5篇
物理学   26篇
  2023年   1篇
  2022年   5篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2018年   3篇
  2017年   8篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   18篇
  2012年   5篇
  2011年   9篇
  2010年   7篇
  2009年   8篇
  2008年   6篇
  2007年   8篇
  2006年   8篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有136条查询结果,搜索用时 203 毫秒
31.
Dynamic fracture behavior of a Griffith crack along the interface of an adhesive bonded material under normal loading is studied. The singular integral equations are obtained by employing integral transformation and introducing dislocation density functions. By adopting Gauss-Jacobi integration formula, the problem is reduced to the solution of algebraic equations, and by collocation dots method. their solutions can be obtained Based on the parametric discussions presented in the paper, the following conclusions can be drawn: (1) Mode I dynamic stress intensity factor (DSIF) increases with increasing initial crack length and decreasing visco-elastic layer thickness, revealing distinct size effect; (2) The influence of the visco-elastic adhesive relaxation time on the DSIF should not be ignored.  相似文献   
32.
本文测算了经表面处理的铝合金的表面能,通过FT-IR表面分析及EDXA成份分析等研究了表面能变化的因素,以TEM观察了表面形貌。另外,测定了环氧及EVA胶粘剂对铝合金的剪切粘度,讨论了它与表面性质的关系。  相似文献   
33.
The environmental scanning electron microscope (ESEM) has been used to image the adhesive secreted by zoospores of the marine alga Enteromorpha as they settle on a surface, under natural, hydrated conditions. Results reveal a featureless, swollen gel-like adhesive pad, in contrast to the fibrillar character of the adhesive when imaged by standard SEM. At high spore densities the adhesive is confluent. Dynamic hydration/dehydration events were followed by changing the water vapour pressure in the sample chamber. Rapid hydration and swelling were observed indicating a very hygroscopic material. Adhesive footprints were detected when surfaces from which spores had been removed by water jetting were examined.  相似文献   
34.
Three novel adhesive oligomers having carboxylic acid and methacrylate groups were synthesized, characterized and used to formulate composite bone cements with newly synthesized zinc-calcium-silicate phosphate. The optimal formulation was determined based on types of oligomer, oligomer/diluent ratio, initiator concentration, and filler level using compressive strength (CS) and curing time (CT) as screening tools. Shrinkage, exotherm and aging of the formed composite cements were also evaluated. Results show that the experimental cement was 186% higher in CS, 16% higher in diametral tensile strength, similar in flexural strength, 56% less in exotherm and 64% less in shrinkage, as compared to conventional polymethylmethacrylate cement. The optimal concentrations for initiators were found to be 1.5% (by weight) for both benzoyl peroxide and N,N-dimethyl-p-toluidine. With increasing initiator concentration, diluent content and zinc oxide content in the cement formulation, CS of the cement increased but curing time decreased. Shrinkage and exotherm of the cement decreased with increasing filler level. CS was not proportional to an increase of filler level and CT increased with an increase of filler level. During aging, the cement showed an increase of strength over 24 h and then no change for over nine months. It appears that this novel cement may be a potential candidate for orthopedic restoration if its biological performance is good and the formulation is optimized.  相似文献   
35.
Polyhedral oligomeric silsesquioxane (POSS)-based glycidyl methacrylate (GMA) hybrid copolymers of P(GMA-MAPOSS) are prepared by methacrylisobutyl polyhedral oligomeric silsesquioxane (MAPOSS) and GMA via free radical polymerization used as coatings. Their morphologies and particle size distributions in CHCl3 solution are characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The effect of MAPOSS content on surface wettability, transparency and permeability of casted films, the adhesive strength, and thermostability of hybrid copolymers are further characterized by scanning electron microscopy (SEM), static contact angle (SCA), UV-Vis, mercury porosimeter, mechanical testing, differential scanning calorimetry (DSC), and thermogravimetry (TGA). Compared with the homogeneous surface of PGMA film, the surface of P(GMA-MAPOSS) film exhibits heterogeneous morphology due to the bulky volume of MAPOSS tending to agglomerate onto the film surface. This micro-rough structure helps to enhance the surface hydrophobicity (100–112° water SCA). While the surface of cured P(GMA-MAPOSS) film obtains a very homogeneous micro-rough morphology without any agglomeration due to the restricted movements of MAPOSS by 250 nm core-shell particles in CHCl3 solution. Therefore, the cured P(GMA-MAPOSS) film provides with superior luminousness (>98%), strong adhesive strength (748.2 Pa), and high thermostability (Tg = 115°C). Particularly, the chemically involved MAPOSS into PGMA can effectually improve the permeability of traditional epoxy resin. It is believed that the POSS-based GMA hybrid copolymers P(GMA-MAPOSS) will have great potential applications as transparent and permeable coatings.  相似文献   
36.
A two-dimensional model has been developed for thermal stresses, elastic strains, creep strains, and creep energy density at the interfaces of short and long trilayer assemblies under both plane stress and plane strain conditions. Both linear (viscous) and non-linear creep constitutive behavior under static and cyclic thermal loading can be modeled for all layers. Interfacial stresses and strains are approximated using a combination of exact elasticity solutions and elementary strength of materials theories. Partial differential equations are linearized through a simple finite difference discretization procedure. The approach is mathematically straightforward and can be extended to include plastic behavior and problems involving external loads and a variety of geometries. The model can provide input data for thermal fatigue life prediction in solder or adhesive joints. For a typical solder joint, it is demonstrated that the predicted cyclic stress–strain hysteresis shows shakedown and a rapid stabilization of the creep energy dissipation per cycle in agreement with the predictions of finite element analysis.  相似文献   
37.
Cu-coated stainless steel surfaces containing micro- and nanoscale binary structures with different surface roughness were successfully fabricated by means of a facile one-step electroless plating technology. The resulting surfaces were modified by the low free energy material HFTHTMS (HFTHTMS = (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane). The experimental results of wettability exhibit that such unmodified surfaces have a strong adhesive force to water droplets, and their contact angles increase with increasing surface roughness, whereas the modified surfaces by HFTHTMS show the superhydrophobic characteristic with contact angles higher than 150° and sliding angles lower than 5°.  相似文献   
38.
The microstructure and properties of AlCrMnMoNiZrB0.1 nitride films prepared by reactive direct current sputtering at various N2-to-Ar flow ratios (RN) were investigated. The films had an amorphous structure at low RN and a face-centered cubic structure at a high RN. As the RN increased, the decrease in clusters and defects resulted in a dense columnar structure and low surface roughness. The peak hardness and modulus of the nitride films were 10.3 and 180 GPa, respectively. The enhanced hardness is ascribed to the increased metal-nitrogen bonding, solid solution strengthening of several metallic nitrides, and lattice strain. The nitride films deposited at RN = 0.2, 0.5, and 0.8 had friction coefficients of 0.16, 0.12 and 0.15, respectively. Wear-out failure occurred within 400 s when RN = 0 and 1.0. Adhesive wear was the dominant wear mechanism.  相似文献   
39.
Summary Many adhesive proteins present in extracellular matrices and in blood contain the tetrapeptide sequence -Arg-Gly-Asp-Ser- (or RGDS) at their cell recognition site. Since this sequence, or similar ones, was found in many proteins involved in major biological mechanisms, conformational investigations were performed on the RGDS fragment. A preliminary review of available crystal structures indicates that the RxDy sequences exhibit 3 well-defined structural patterns: one corresponding to a strong interaction between the Arg and Asp ionic side chains which are only about 4 Å apart, one with the ions separated by about 8 Å, and another in which the side chains are further apart (about 11 Å).The conformational behaviour of the isolated RGDS fragment was next tackled using sequential building, Monte Carlo and molecular dynamics computational techniques. Analysis of the RGDS sequence conformational possibilities, as simulated in vacuum and in water solution, indicates that they can be classified into several conformational classes, which correspond roughly to the behaviour of the RGDS fragment as observed in protein matrices. This suggests the possibility of understanding the biological role of the RGDS or parent sequences in recognition processes.  相似文献   
40.
复合结构界面粘接强度的声-超声评价研究   总被引:1,自引:0,他引:1       下载免费PDF全文
邓明晰 《应用声学》2005,24(5):292-299
基于Ritec-SNAP测量系统建立了声-超声技术实验系统,分析了在声-超声技术评价过程中用声信号的幅频特性及应力波因子表征复合结构界面粘接强度的可行性。用粘接层的固化过程模拟复合粘接板粘接强度的变化过程,以粘接层的固化时间作为粘接强度的间接表征参量,借助于已建立的实验系统对复合结构粘接强度的评价问题进行了实验研究。实验结果表明,应力波因子与反映界面粘接强度的粘接层固化时间呈单调对应关系,且不同固化时期的应力波因子存在明显的不同特性,表明用应力波因子评价复合结构的界面粘接强度具有可行性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号