首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   459篇
  免费   77篇
  国内免费   183篇
化学   419篇
晶体学   15篇
力学   20篇
综合类   12篇
数学   84篇
物理学   169篇
  2024年   4篇
  2023年   41篇
  2022年   33篇
  2021年   50篇
  2020年   32篇
  2019年   37篇
  2018年   16篇
  2017年   24篇
  2016年   20篇
  2015年   25篇
  2014年   41篇
  2013年   28篇
  2012年   29篇
  2011年   32篇
  2010年   25篇
  2009年   32篇
  2008年   26篇
  2007年   22篇
  2006年   21篇
  2005年   14篇
  2004年   14篇
  2003年   16篇
  2002年   18篇
  2001年   18篇
  2000年   16篇
  1999年   11篇
  1998年   18篇
  1997年   17篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有719条查询结果,搜索用时 171 毫秒
41.
固态电池以其高安全性和高能量密度而备受关注。石榴石型固体电解质(LLZO)由于具有较高的离子导电性和对锂金属的稳定性,在固态电池中具有应用前景,但陶瓷与锂金属较差的界面接触会导致高的界面阻抗和可能形成的枝晶穿透。我们利用LLZO表层独特的H+/Li+交换反应,提出了一种简便有效的金属盐类水溶液诱发策略,在电解质表面原位构建ZnO亲锂层,界面处LiZn合金化实现紧密连续的接触。引入改性层后,界面阻抗可显著降低至约10Ω·cm2,对称电池能够在0.1mA·cm-2的电流密度下实现长达1000h的长循环稳定性。匹配正极LiFePO4(LFP)或LiNi0.5Co0.2Mn0.3O2(NCM523)的准固态电池在室温下能够稳定循环100次以上。  相似文献   
42.
金属锂具有电位低、比容量高等突出优点,是极具吸引力的下一代高能量密度电池的负极材料,然而存在枝晶、死锂、副反应严重、库伦效率低、循环稳定性差等问题,限制了其实际应用。金属锂负极的成核是电化学沉积过程中的重要步骤,锂在集流体或导电载体上的均匀成核和稳定生长对于抑制枝晶死锂、提高充放电效率和循环性能具有关键作用。本文从成核机制与载体效应的角度概述了锂金属负极的研究进展,介绍了锂成核驱动力、异相成核模型、空间电荷模型等内容,分析了锂核尺寸及分布与过电位和电流密度的关系,并通过三维载体分散电流密度、异相晶核/电场诱导成核、晶格匹配等方面的研究实例讨论了载体修饰对锂负极的性能提升。  相似文献   
43.
鉴于传统神经网络和支持向量机机理复杂、计算量大的缺陷,很难实时跟踪磷酸铁锂电池组复杂快速的内部反应,影响电池荷电状态的估算精度,提出应用一种简单、有效的极限学习机对一额定容量为100Ah、额定电压为72V的纯电动汽车磷酸铁锂电池组建模,并分别与BP神经网络、RBF神经网络、支持向量机进行对比。随后,以学习时间和泛化性能为优化目标,应用粒子群方法寻找最佳隐层节点个数。结果表明,基于极限学习机的磷酸铁锂电池组模型的学习时间、泛化性能优于BP神经网络、RBF神经网络、支持向量机;隐层节点优化后,模型的学习时间和泛化性能达到最优。  相似文献   
44.
基于已有典型工业挥发性有机物甲苯设计的一套冷凝法回收系统,对其进行数值模拟和优化设计。运用物性软件REFPROP对甲苯负荷及制冷系统性能进行了模拟。通过对系统的模拟计算,研究了冷却级蒸发温度、冷凝温度以及甲苯混合气体入口温度对该冷凝法甲苯回收系统的性能影响,并针对冷却级温度影响进行了经济性分析。在此基础上,提出了冷量回收的优化方案,并与原有方案进行了对比分析,为进一步优化设计提供了理论依据。优化结果表明:系统预冷级负荷降低69.6%,系统的能耗降低38.9%,COP增大61.4%,压缩机排气温度下降7.7℃。  相似文献   
45.
传统的风冷式热回收热泵系统只有在制取生活热水这段时间内是高效运行的,而传统的水冷式热泵系统难以实现冬季的热泵循环,设计一种新型的风水冷热水空调系统,在热回收器上连接冷却塔,在夏季制冷运行中,将不需要热回收的那部分热量完全通过冷却水带走,保证系统都能在较高性能系数的状态下运行。经过实际工程运行验证,系统的最高制冷性能系数可以达到3.5,最高综合性能系数可以达到6.5,达到了节能的目的。  相似文献   
46.
饮用水安全是近年来受到广泛关注的民生问题,一系列的饮水污染事件说明我国的饮水还存在许多安全隐患。重金属是饮用水中常见的污染物,也是饮用水质量重要的检测指标。目前饮用水中重金属元素的测定主要有分光光度法[1]、原子荧光光谱法[2]和原子吸收光谱法[3-4]等,这些方法简便易行,但不能进行多元素的同时测定,分析周期较长,不能达到快速检测的目的。随着电感耦合等离子体  相似文献   
47.
涂碳铝箔对磷酸铁锂电池性能影响研究   总被引:1,自引:0,他引:1  
本文研究了使用涂碳铝箔作为正极集流体磷酸铁锂电池的性能。研究对比了使用普通铝箔和涂层铝箔的10 Ah软包磷酸铁锂电池的主要性能。研究表明:使用涂层铝箔不但可以提高磷酸铁锂材料的粘结性,而且使用导电涂层可以有效降低正极材料和集流体的接触内阻,从而减小电池内阻,提高电池倍率性能。与使用普通铝箔作为集流体相比,通过使用涂碳铝箔可以使得电池的内阻降低65%左右,但是,磷酸铁锂正极材料的克容量却偏低约5~10 mAh·g-1,首次效率也偏低4%左右;在快速放电15C倍率下,使用涂碳铝箔的电芯比使用普通铝箔容量提高约15%左右,10C放电倍率下,平台增加0.3~0.4 V;使用涂碳铝箔电芯的常温自放电率较高,但容量恢复率也较高;550周循环下,使用涂碳铝箔可以使得电池的循环性能提高约1%。而在电池低温性能方面,使用涂碳铝箔对低温性能并无改善。  相似文献   
48.
选用淀粉为指示剂,保持溶液pH为4-5,控制O3的通入量,将废液中的I-定量氧化至I2,废液由蓝绿色突变为棕色,剩余I-的浓度小于4×10^-5mol·L^-1,I2的回收率可达97.4%。  相似文献   
49.
Nano-crystalline FeOOH particles(5~10 nm) have been uniformly mixed with electric matrix of single-walled carbon nanotubes(SWNTs)for forming FeOOH/SWNT composite via a facile ultrasonication method. Directly using the FeOOH/SWNT composite(containing 15 wt%SWNTs) as anode material for lithium battery enhances kinetics of the Li+insertion/extraction processes, thereby effectively improving reversible capacity and cycle performance, which delivers a high reversible capacity of 758 mAh g-1under a current density of 400 mA g-1even after 180 cycles, being comparable with previous reports in terms of electrochemical performance for FeOOH anode. The good electrochemical performance should be ascribed to the small particle size and nano-crystalline of FeOOH, as well as the good electronic conductivity of SWNT matrix.  相似文献   
50.
研究了XMg O·YMg(OH)2对水中氟离子的吸附性能,考察了吸附时间、吸附剂用量、含氟水p H值、温度、含氟水初始浓度等因素对吸附的影响。实验结果表明,在较宽的p H(3.4~8.4)值和水温(22~51℃)范围内,XMg O·YMg(OH)2对水中氟离子具有极强的吸附能力,室温下0.4g XMg O·YMg(OH)2可将100m L浓度为30mg F-1·L-1含氟水处理为符合含氟标准的饮用水。氟离子在XMg O·YMg(OH)2上的吸附速率较大,30min内基本达到吸附平衡,吸附平衡符合Langmuir方程,在50min内达到饱和吸附,室温下饱和吸附量为13.46mg·g-1。净化水呈微碱性,含有5.68~15.07mg·L-1Mg2+,有益于人体健康。吸附饱和后的XMg O·YMg(OH)2经焙烧再生,除氟率可达81%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号