首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10334篇
  免费   2547篇
  国内免费   6782篇
化学   11823篇
晶体学   407篇
力学   785篇
综合类   306篇
数学   200篇
物理学   6142篇
  2024年   142篇
  2023年   384篇
  2022年   409篇
  2021年   445篇
  2020年   408篇
  2019年   486篇
  2018年   344篇
  2017年   490篇
  2016年   487篇
  2015年   586篇
  2014年   974篇
  2013年   880篇
  2012年   812篇
  2011年   848篇
  2010年   831篇
  2009年   821篇
  2008年   840篇
  2007年   802篇
  2006年   762篇
  2005年   748篇
  2004年   779篇
  2003年   738篇
  2002年   603篇
  2001年   653篇
  2000年   470篇
  1999年   412篇
  1998年   425篇
  1997年   384篇
  1996年   410篇
  1995年   381篇
  1994年   324篇
  1993年   312篇
  1992年   324篇
  1991年   289篇
  1990年   247篇
  1989年   226篇
  1988年   67篇
  1987年   29篇
  1986年   22篇
  1985年   29篇
  1984年   13篇
  1983年   18篇
  1982年   6篇
  1980年   2篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
核磁共振(NMR)技术是研究表面活性剂在溶液中聚集状态的一种非常有用的工具,本文运用多种NMR技术研究了几种不同类型表面活性剂及水溶性功能高分子在水溶液中的聚集行为: 1. 季铵盐型双子表面活性剂16-4-16的聚集行为季铵盐型双子表面活性剂N,N′-双(十六烷基二甲基)-α,ω-丁烷溴化铵(16-4-16)分子中联接基团及靠近离子头的质子位于胶束的壳层, 运动受到一定限制. 而距离离子头较远的烷烃链位于胶束的内部,运动相对自由. 与对应的单链表面活性剂十六烷基三甲基溴化铵(CTAB)相比,16-4-16形成的胶束堆积更为紧密. 通过NOESY谱中交叉峰强度的定量计算,认为16-4-16在胶束中分子以上下交错排列的方式形成球形聚集体.  2. 脱氧胆酸钠与十六烷基三甲基溴化铵的相互作用在脱氧胆酸钠(NaDC)溶液中,NaDC质子H3与其他质子不同,其横向弛豫时间(T2)表现为双指数衰减,表明此质子可能存在两种不同的状态. 实验证明,其它胆酸盐的H3的横向弛豫也呈现双指数衰减. 因此推测在胆酸盐的稀溶液中,3-OH质子和羰基氧之间有可能存在氢键作用,形成了头尾相连的分子对结构.  在NaDC和CTAB的混合溶液中,两者形成1∶1的混合胶束. 用NOESY和ROESY研究混合胶束的结构,显示CTAB的离子头位于NaDC的羧酸基团附近. 这可能是正负离子之间的静电性相互作用的结果.  3. 丙烯酰胺/丙烯酸模板共聚物的微结构研究了不同pH值条件下,丙烯酰胺和丙烯酸共聚物分子在水溶液中的聚集形态. 在酸性溶液中,分子内的氢键致使聚集体形成较为紧密的堆积,侧链的苯氧基团运动受阻;随着溶液pH值的增大,丙烯酸电离产生的阴离子使得分子间的静电斥力增大,分子链变得伸展,分子间的氢键作用导致了聚集体体积变大. 当溶液呈强碱性,丙烯酸完全电离,氢键作用力被破坏,分子呈现自由伸展的状态,侧链的苯氧基团运动相对自由.  相似文献   
992.
应用核磁共振技术,对几种典型的表面活性剂在水溶液中的聚集行为、结构特征、动力学特性和相互作用等进行了研究. 
利用1D 1H NMR方法测得4-癸基萘磺酸钠(SDNS)在313 K温度时的临界胶束浓度(CMC)在0.82~0.92 mmol/L之间,与报道的298 K时的CMC范围相同. 弛豫时间和2D NOESY实验结果表明,与298 K时的SDNS胶束相比,313 K温度时,SDNS胶束中烷烃链排列得更紧密,其中与萘环相连的第一和第二个亚甲基参与了胶束紧密层的形成,更紧密地堆积在萘环之间. SDNS质子T2值随温度的变化表明,在单体和胶束两种状态下,质子运动对温度的敏感性明显不同. 由自扩散系数分析得到,SDNS胶束的水合半径约为其单体水合半径的5.3倍. 而在十二烷基磺酸钠(SDSN)胶束中,由于静电排斥力的作用,在同样温度下SDSN的胶束紧密层排列比SDNS更疏松. 
NMR实验表明,在SDNS/Triton X-100 (TX-100)和SDNS/SDSN体系中形成了混合胶束. 在SDNS/TX-100混合胶束中,TX-100的苯环靠近SDNS的烷烃链,而它的聚烷氧链除与苯环相连的第一个乙氧基基团以外都被限制在SDNS的萘环附近. 在SDNS/SDSN混合胶束中,SDSN的磺酸基比SDNS分子更靠近胶束内部. 而SDNS的萘环将SDSN的磺酸基分隔开,在降低带负电荷的磺酸基极性头之间的静电排斥力中起到了积极的作用,有助于混合胶束的形成.
从自扩散系数、横向弛豫和质子距离等NMR测定参数推测,在浓度为0.26 mmol/L(318 K)的N,N′-双(十六烷基二甲基)-α,ω-丙烷溴化铵(16-3-16)溶液中形成了近似球形的胶束,胶束表面的带正电荷的铵基极性头呈锯齿状排列以减弱分子间静电排斥力的影响. 弛豫时间测定表明,与N,N′-双(十六烷基二甲基)-α,ω-丁烷溴化铵(16-4-16)相比,16-3-16在胶束表面的spacer链段更僵硬, 在胶束核区的烷烃侧链排列的更紧密. NMR共振峰的线形分析表明,16-3-16和16-4-16侧链末端的甲基在胶束中位于两个不同的位置.   相似文献   
993.
总结了HZSM-5分子筛中邻近的酸中心协同催化作用的研究进展, 包括布朗斯特酸(B酸)和路易斯酸 (L酸)的协同催化、 B酸和B酸的协同催化作用. 综述了通过多种表征手段下协同催化作用机理的研究进展, 以及实验与理论计算相结合并相互验证的研究结果, 对邻近酸中心协同作用下反应分子的共同吸附、 活化与转化路径的特点进行了分析与总结, 提出了对邻近酸中心协同催化作用进行深入研究的关键科学问题和可能的解决方案.  相似文献   
994.
利用密度泛函理论研究了NH3在完整和含有缺陷的硼纳米管上的吸附行为以及相关电子性质. 计算结果表明, 对于α硼纳米管, 在不同的直径和手性条件下, NH3均倾向于吸附在配位数为6的顶位上. 电子结构计算结果表明, NH3能够吸附在纳米管表面主要是由于N和B原子产生了较强的相互作用. 表明硼纳米管是一种潜在的NH3气气敏材料.  相似文献   
995.
《Science》杂志最近刊发了吉林大学刘堃团队关于手性纳米材料研究的重要进展: 通过超分子作用诱导金纳米棒与人胰岛淀粉样多肽之间共组装, 构筑具有类似于手性液晶结构的纳米螺旋超结构. 与单独的金纳米棒相比, 长程有序的纳米螺旋结构的手性各向异性因子(g-factor)提高了4600倍, 高达0.12. 该工作在液晶与手性无机纳米结构间建立了联系, 为构筑有机-无机光学活性结构提供了统一的设计原则, 并为淀粉样类疾病药物在复杂生物介质中的筛选开发了新方法.  相似文献   
996.
首先, 在碱性条件下, 不使用表面活性剂, 采用St?ber小球法以正硅酸四乙酯(TEOS)和正硅酸四丙酯(TPOS)为硅源, 生成初级氧化硅球形颗粒; 然后, 使酚醛树脂(间苯二酚和甲醛)与球形氧化硅的羟基共缩合形成酚醛树脂-氧化硅复合材料; 最后, 经高温碳化和酸蚀获得了空心碳纳米球(HCNSs). 通过调节TEOS/TPOS的摩尔比获得了一系列具有良好的单分散性且粒径、 壁厚可调节的HCNSs, 其粒径和壁厚分别在280~430 nm和15~63 nm的范围内. 仅以TPOS为硅源时合成的HCNS-0/4具有较大的粒径(426 nm)和壁厚(63 nm)、 较高的比表面积(1216 m2/g)和孔容(0.508 cm3/g), 并且具有较大的挥发性有机化合物(VOCs)吸附性能, 其正己烷、 甲苯和油气的静态吸附容量分别为2.02, 1.42和0.926 g/g, 正己烷和甲苯的动态吸附容量分别为2.01 g/g和1.37 g/g, 均远高于商业化活性炭.  相似文献   
997.
柔性电子作为新兴的研究热点, 涉及材料、 化学、 物理等多个基础学科的交叉, 以及在生物医用、 可穿戴设备及人工智能等多个领域的应用. 柔性电子设备的制造加工过程中会用到弹性基底、 导电层、 功能层等多种性质各异的材料, 其互相之间的整合受到它们表面性质和界面结合力的限制; 器件的功能、 可靠性、 对环境的敏感性等也受到了器件表界面性质的影响; 因此, 对材料和器件表界面的处理在柔性电子学中具有重要作用. 本文对柔性电子学中常用的表界面化学过程分为3大类进行介绍: 表面电化学过程, 基于特定化合物反应产生的电流制备电化学传感器, 利用电流/电压控制表面负载化合物; 表面修饰, 通过表面改性提高材料的加工性能, 共价修饰分子层或其它材料赋予器件特殊功能性质或保护层; 不同材料之间的界面连接, 通过共价连接或化学反应辅助的物理交联实现不同材料的结合, 提高柔性器件的稳定性, 实现柔性设备的整合. 对各应用进行总结和举例后, 讨论了存在的问题, 并对未来的发展方向及前景进行了展望.  相似文献   
998.
使用大规模自旋极化密度泛函理论计算研究了表面修饰和尺寸对金刚石纳米线(DNs)中氮空位(NV)色心的几何结构、 电子结构、 磁性和稳定性的影响. 理论上设计了几种不同的DNs, 这些DNs具有不同的表面修饰(干净、 氢化和氟化), 并且直径达数百个原子. 实验结果证明, 中性(NV0)和带1个负电荷(NV-)的NV色心的电子结构不受半导体表面修饰和DNs直径大小的影响, 但NV色心的稳定性对这两个因素具有不同的响应. 此外, 研究中还发现, 由于DNs中存在圆柱形表面电偶极子层, 对DNs中掺杂的NV-色心的稳定性, 表面改性诱导了不依赖尺寸的长程效应. 特别地, 对于n型氟化金刚石表面, 掺杂在DN中的NV-色心可以稳定存在, 而对于p型氢化表面, NV0则相对更稳定. 因此, 表面修饰为控制金刚石纳米线中的NV色心的电子结构和稳定性提供了一种精确有效的调控方法.  相似文献   
999.
研究高活性和稳定性的非贵金属基析氢催化剂对解决当前能源危机和环境污染问题具有重要意义.碳化钨具有与贵金属Pt类似的d带电子结构,因而成为一类新兴的非贵金属析氢催化剂,受到广泛关注.磷掺杂是提高催化剂析氢活性的有效方法之一,然而目前最常见的构筑磷掺杂方法是使用多金属氧酸盐(POMs,如H3PW12O40),其固定的W/P原子比导致W2C中的掺杂浓度难以调控,并且磷掺杂主要是进入碳载体而不是碳化物本身,从而导致无法明确杂原子对其电催化析氢活性的贡献.本文采用植酸(PA)为磷源设计合成了可控磷掺杂W2C纳米颗粒,并探讨了催化剂组分、杂原子掺杂位置与析氢性能之间的关系.深入研究了磷掺杂碳化钨(WCP)的化学结构和析氢活性.与原始的W2C催化剂相比,WCP具有更高的本征活性、更快的电子转移速率和更多的活性位数量,并且在酸性和碱性条件下均表现出较好的析氢性能.特别是过电位为-200 mV时,WCP催化剂的本征活性在酸性和碱性条件下分别为0.07和0.56 H2 s-1,高出纯W2C(0.01和0.05 H2 S-1)数倍.同时,在电流密度为-10 mA cm-2时,优化后的WCP催化剂在酸性和碱性条件下的析氢过电位分别降低了96和88 mV.XPS及EDS元素分析结果表明,随磷源添加量增加,磷掺杂从碳化钨表面逐渐向内部扩散,进一步说明磷取代位置与析氢活性之间的构效关系,高浓度的表面磷取代可以加速质子捕获过程,从而显著提高其析氢活性,而过量的内部磷取代会破坏W2C结构,降低电子转移速率,从而导致析氢性能下降.利用密度泛函理论计算深入研究了WCP具有较好析氢性能的原因,与内部磷取代相比,表面磷取代会使碳化钨表现出更合适的氢吸附自由能,并且更加有效地降低了氢释放势垒,从而优化了析氢反应动力学.综上,本文为元素掺杂工艺提供了新的思路,同时研究了表面异质原子对析氢活性的关键作用,为该类催化材料的构效关系研究提供了新思路.  相似文献   
1000.
染料敏化光电化学电池(DSPECs)是构建人工光合作用体系的潜在方式,其优势在于可通过优化染料结构来拓展可见光吸收范围,从根本上提高太阳能利用效率.染料敏化光阳极在受激发产生电荷分离之后,激发电子注入TiO2半导体导带,由于其导带位置比传统的可见光半导体,如BiVO4和Fe3O4等相比较负,因此理论上可以在较小的偏压下取得较大的光电转换效率,也更有利于和光阴极相耦合实现无偏压分解水.电荷传输动力学研究表明,注入到TiO2导带的电子向氧化态光敏剂和催化剂的回传是造成体系能量损失的主要原因,集中体现在光电流密度和效率的降低.目前,已经报道了多种手段来减少DSPECs光阳极表面的电子回传,包括使用带有长烷基链的锚定基团对水氧化催化剂进行修饰,在半导体表面引入电子中介体以及使用核-壳结构的基底等.其中,SnO2/TiO2基底被广泛应用在染料敏化光阳极中,这种基底可以提高光生电子的注入效率,同时两种金属氧化物之间的异质结有效抑制了电子回传,从而提高了DSPECs的光电活性.然而,核-壳结构基底需要使用原子层沉积技术来制备,所以操作相对复杂.本文基于Ru-bda(bda=2,2'-联吡啶-6,6'-二羧酸)结构的分子水氧化催化剂和带有磷酸修饰基团的三联吡啶钌通过共吸附的方式制备染料敏化光阳极,在不使用核-壳结构基底的情况下,利用吡啶衍生物对TiO2电极表面的修饰来减少电子回传.本文利用一系列吡啶衍生物作修饰负载在TiO2光阳极上(TiO2|RuP,1;RuP=Ru(4,4'-(PO3H2)2-2,2'-联吡啶)(2,2'-联吡啶)2;1=Ru(bda)(L)2,bda=2,2'-联吡啶-6,6'-二羧酸,L=(10-吡啶-4-基氧基)癸基)膦酸.在100 mW/cm2的白光照射下(λ>400 nm),TiO2|RuP,1,P1(P1=4-羟基吡啶)光阳极在0.4 V(vs.NHE)的外加偏压下获得了1 mA/cm2的光电流密度,其光电流比未修饰吡啶的光阳极增加了42%.同时,其入射光子-电流转化效率在470 nm波长的单色光光照下达到最大,为13.6%.经过吡啶衍生物所修饰的光阳极光电性能和文献中利用核-壳结构基底所制备的类似光阳极性能相当,且光电流密度随吡啶对位取代基供电性能的增强而增大.瞬态吸收光谱和电化学阻抗谱测试表明,吡啶吸附在光阳极上能有效地抑制界面上的电子回传,延长电荷分离寿命,是光电流增加的根本原因,这也表明有机小分子修饰是提高染料敏化光阳极性能的简单、有效的策略.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号