首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1559篇
  免费   473篇
  国内免费   603篇
化学   983篇
晶体学   84篇
力学   51篇
综合类   56篇
数学   438篇
物理学   1023篇
  2024年   19篇
  2023年   77篇
  2022年   86篇
  2021年   84篇
  2020年   61篇
  2019年   88篇
  2018年   55篇
  2017年   72篇
  2016年   73篇
  2015年   91篇
  2014年   162篇
  2013年   139篇
  2012年   109篇
  2011年   115篇
  2010年   102篇
  2009年   112篇
  2008年   135篇
  2007年   136篇
  2006年   91篇
  2005年   86篇
  2004年   75篇
  2003年   91篇
  2002年   60篇
  2001年   67篇
  2000年   72篇
  1999年   72篇
  1998年   52篇
  1997年   34篇
  1996年   32篇
  1995年   26篇
  1994年   34篇
  1993年   30篇
  1992年   24篇
  1991年   16篇
  1990年   17篇
  1989年   21篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   2篇
排序方式: 共有2635条查询结果,搜索用时 31 毫秒
111.
将癸酸和香叶醇在10 mL玻璃管中以2∶1的物质的量之比混合,然后将混合物在80℃水浴锅中加热,直至形成稳定的低共熔溶剂(DES)。该溶剂易合成、低成本、低毒性且具有高生物降解性,是一种新型的疏水性DES,可用于水产品中内分泌干扰物的微萃取。取已粉碎的水产品样品1 g和乙腈2 mL置于5 mL离心管中,以转速2 000 r·min^(-1)涡旋振荡3 min。取上清液400μL,经0.45μm滤膜过滤,滤液与100μL DES混合,并迅速注入装有5 mL 80 g·L^(-1)氯化钠溶液的10 mL离心管中,以完成DES的分散。将上述离心管以转速3 500 r·min^(-1)离心5 min,然后置于冰浴中进行固化。将固化后所得样品溶解于150μL甲醇中,以Eclipse Plus C;色谱柱为分离柱,以体积比90∶10的甲醇-水的混合液为流动相,在激发波长228 nm,发射波长305 nm处测定双酚A、4-叔辛基苯酚和壬基酚等3种内分泌干扰物的含量。结果表明,DES在冰浴中固化,可促进其从水溶液中分离,简单且快速,利于萃取剂的收集。3种内分泌干扰物的质量分数均在0.25~10μg·g^(-1)内与其对应的峰面积呈线性关系,检出限(3S/N)均为0.075μg·g^(-1)。用此法对空白加标样品进行测定,测定值的日内和日间相对标准偏差(n=5)均小于4.0%。以空白样品为基体进行加标回收试验,所得回收率为78.7%~91.6%。  相似文献   
112.
魏家祺  陈晓东  李述周 《电化学》2022,28(10):2214012
氢气是一种清洁、高效、可再生的新型能源,并且是未来碳中和能源供应中最具潜力的化石燃料替代品。因此,可持续氢能源制造具有极大的吸引力与迫切的需求,尤其是通过清洁、环保、零排放的电解水方法。然而,目前的电解水反应受到其缓慢的动力学以及低成本/能源效率的制约。在这些方面,电化学合成通过制造先进的电催化剂和提供更高效/增值的共电解替代品,为提高水电解的效率和效益提供了广阔的前景。它是一种环保、简单的通过电解或其他电化学操作,对从分子到纳米尺度的材料进行制造的方法。本文首先介绍了电化学合成的基本概念、设计方法以及常用方法。然后,总结了电化学合成技术在电解水领域的应用及进展。我们专注于电化学合成的纳米结构电催化剂以实现更高效的电解水制氢,以及小分子的电化学氧化以取代电解水制氢中的析氧共反应,实现更高效、 增值的共电解制氢。我们系统地讨论了电化学合成条件与产物的关系,以启发未来的探索。最后,本文讨论了电化学合成在先进电解水以及其他能量转换和储存应用方面的挑战和前景。  相似文献   
113.
锂硫电池因其较高的理论容量和对环境友好等优势被视为极具发展潜力的储能装置,但是多硫化物的穿梭效应极大地限制了锂硫电池的实际应用。本文以葡萄糖为碳源,离子液体为氮源和硫源,KCl和ZnCl2为模板剂,KOH为活化剂,通过热解工艺合成了氮硫共掺杂多孔碳(NSPC)。XPS和极性吸附实验表明N、S杂原子成功引入并且提高了碳材料对多硫化物的吸附能力,有效缓解多硫化物的穿梭效应,而较高的比表面积(1290.67 m2·g-1)有助于提高硫负载量。负载70.1wt.%的硫后(S@NSPC)作为锂硫电池的正极材料表现出了良好的电化学性能。在167.5 mA·g-1的电流密度下S@NSPC的首次放电容量为1229.2 mAh·g-1,远高于S@PC的861.6 mAh·g-1,且S@NSPC循环500圈后容量为328.1 mAh·g-1。当电流密度从3350 mA·g-1恢复至167.5 mA·g-1时,可逆容量达到首圈放电比容量的80%,几乎恢复至其初始值。  相似文献   
114.
显微共聚焦拉曼光谱仪可有效分析物质的化学成分、微观结构、应力应变等特性,广泛应用于生命、医学、食品、化学、材料等领域,在拉曼研究中占有重要地位. 介绍了InVia-Reflex显微共焦拉曼光谱仪的工作原理及使用方法,对激光损伤样品、激光强度变化引起拉曼光谱特征改变、拉曼信号隐藏在强背底信号中等常见问题进行了分析,给出了相应的解决方案. 最后,详细阐述了如何有效地管理和维护设备,以提高仪器的使用效率,为同类型仪器的运行提供管理经验.  相似文献   
115.
该文建立了一种简单、高效的新型疏水性低共熔溶剂液液微萃取法,用于提取和富集市售包装豆奶中的三嗪类(阿特拉津、去草净)和苯脲类(灭草隆、绿麦隆)除草剂,并结合高效液相色谱对目标分析物进行分离和测定。以六氟异丙醇为氢键供体,四丁基氯化铵为氢键受体,按照不同摩尔比制备了一系列疏水性低共熔溶剂,并对影响萃取效果的实验条件进行了优化,包括低共熔溶剂的种类及用量、氯化钠用量、涡旋时间、pH值和温度。结果表明,在最佳实验条件下,4种目标物在1.00~500.00 μg/L范围内具有良好的线性关系(r ≥ 0.998 4),检出限和定量下限分别为0.56~0.95 μg/L和1.87~3.16 μg/L,日内和日间相对标准偏差(RSD)分别为0.28%~2.0%和2.1%~7.5%,加标回收率为86.4%~117%。该方法具有操作简单快速、萃取时间短、试剂用量少和实验成本低等优点,可用于市售包装豆奶中三嗪类和苯脲类除草剂的分析检测。  相似文献   
116.
通过煅烧和静电自组装的方法制备了1T′ MoS2超薄纳米片和类石墨烯相氮化碳(g-C3N4)纳米片的复合材料. 该材料在光催化实验中展现出6.24 μmol?g?1?h?1的产氢速率, 优于贵金属铂修饰的g-C3N4纳米片的性能(4.64 μmol?g?1?h?1). 此外, 该复合材料在光催化降解有机染料甲基橙的实验中表现出0.19 min?1的催化速率, 而纯g-C3N4纳米片只有0.053 min?1的催化速率. 材料光催化性能的提升可归结于1T′MoS2 和g-C3N4之间的协同效应, 包括光吸收的增强以及因1T′MoS2优异电子导电性而得到的高效电荷分离.  相似文献   
117.
《分析试验室》2021,40(9):1004-1009
采用高密度疏水性低共熔溶剂涡旋辅助-分散液液微萃取高效液相色谱-荧光(VA-DLLMEHPLC-FLD)检测黄酒中黄曲霉毒素(AFB1,AFB2,AFG1和AFG2)。选用樟脑(氢键受体)和对氯苯酚(氢键供体)以1:1的摩尔比合成高密度疏水性低共熔溶剂。优化了萃取剂的种类、HBA与HBD摩尔比、萃取剂的用量、涡旋时间、离心时间和p H等参数以实现最佳提取效率。在最佳萃取条件下,AFG2,AFG1,AFB2和AFB1的线性范围在0.76~450 ng/L之间(R2≥0.9993),检出限为0.23~0.91 ng/L,富集倍数为164~248。日内和日间精密度均不大于4.7%。方法已成功应用于黄酒中黄曲霉毒素的检测。  相似文献   
118.
基于密度泛函理论 Density Functional Theory 的第一性原理平面波超软赝势方法USPP,首先对Be、C掺杂AlN的晶格结构进行优化,得到其稳定结构.然后对Be、C掺杂AlN的晶格参数、结合能、能带结构、电子态密度和电荷集居数进行了详细地计算和分析.计算结果表明:Be-2C共掺杂AlN的构型具有更稳定的结构,能使受主能级变宽、非局域化特征明显.因此,Be-2C共掺杂AlN有望成为一种更稳定高效的p型掺杂手段.  相似文献   
119.
设计合成了具有精确分子结构的聚合物对深入了解其结构与性能之间的关系起着至关重要的作用。研究了一种合成带有三乙基硅氧侧基的环状无规共聚酯的新方法。功能性单体γ-三乙基硅氧基-ε-己内酯(γ-Et3SiOεCL)和ε-己内酯(ε-CL)在环状引发剂2,2-二丁基-2-锡-1,3-二氧环庚烷(DSDOP)的作用下,进行活性开环聚合反应以制备活性环状无规共聚酯(LCP(εCLcoγEt3SiOεCL))前体,当单体完全转化后,以该活性环状前体作为大分子引发剂,引发反应性单体α-(1-丙烯酰氧乙基)-ε-己内酯(αAEεCL)进行嵌段聚合反应,合成了在活性中心附近带有不饱和双键的功能性环状嵌段共聚酯,即活性环状聚(ε-己内酯-co-γ-三乙基硅氧基-ε-己内酯)-b-(α-(1-丙烯酰氧乙基)-ε-己内酯)。最后该活性环状嵌段共聚酯在紫外光照射下,反应性单体结构单元中的双键发生分子内交联反应,从而制得稳定的不含有机锡的新型环状无规共聚酯cP(εCLcoγEt3SiOεCL)(Mn,NMR=28500)。采用SEC、1H NMR以及DSC等技术手段对聚合物的结构和性能进行表征。该方法的突出特点是能够高效地合成带有功能性侧基的高相对分子质量的环状无规共聚酯。  相似文献   
120.
共无定形药物是活性药物成分与其他小分子固体物质(药物或辅料)结合形成的具有单一玻璃化转变温度的单相无定形二元体系。它作为一种新的药物固体形态,可能改善药物的溶解度、溶出速率、稳定性及生物利用度等理化性质,已成为药物研发的一种新途径。本文主要对共无定形药物的定义、形成机理、制备方法、分析鉴别方法、物理化学稳定性以及溶解度和溶出速率进行综述,并对共无定形与固体分散体和共晶的比较进行了概述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号