首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1984篇
  免费   239篇
  国内免费   235篇
化学   987篇
晶体学   24篇
力学   45篇
综合类   90篇
数学   723篇
物理学   589篇
  2024年   8篇
  2023年   116篇
  2022年   76篇
  2021年   89篇
  2020年   95篇
  2019年   57篇
  2018年   71篇
  2017年   78篇
  2016年   105篇
  2015年   109篇
  2014年   167篇
  2013年   189篇
  2012年   207篇
  2011年   150篇
  2010年   157篇
  2009年   141篇
  2008年   81篇
  2007年   67篇
  2006年   72篇
  2005年   63篇
  2004年   42篇
  2003年   39篇
  2002年   35篇
  2001年   40篇
  2000年   27篇
  1999年   37篇
  1998年   35篇
  1997年   15篇
  1996年   8篇
  1995年   8篇
  1994年   9篇
  1993年   2篇
  1992年   6篇
  1991年   8篇
  1990年   6篇
  1989年   3篇
  1988年   37篇
  1987年   1篇
  1980年   1篇
  1959年   1篇
排序方式: 共有2458条查询结果,搜索用时 44 毫秒
91.
Supramolecular optical chemosensors are useful tools in analytical chemistry for the visualization of molecular recognition information. One advantage is that they can be utilized for array systems to detect multiple analytes. However, chemosensor arrays have been evaluated mainly in the solution phase, which limits a wide range of practical applications. Thus, appropriate solid support materials such as polymer gels and papers are required to broaden the scope of the application of chemosensors as on-site analytical tools. In this review, we summarize the actual approaches for the fabrication of solid-state chemosensor arrays combined with powerful data processing techniques and portable digital recorders for real-world applications.  相似文献   
92.
Membrane technology is of particular significance for the sustainable development of society owing to its potential capacity to tackle the energy shortage and environmental pollution. Membrane materials are the core part of membrane technology. Researchers have always been pursuing predictable structures of advanced membrane materials, which provides a possibility to fully unlock the potential of membranes. Covalent organic frameworks(COFs), with the advantage of controllable pore microenvironment, are considered to be promising candidates to achieve this design concept. The customizable function of COF membranes through pore engineering does well in the enhancement of selective permeability performance, which offers COF membranes with great application potentials in separation and transportation fields. In this context, COF-based membranes have been developed rapidly in recent years. Herein, we present a brief overview on the strategies developed for pore engineering of COF membranes in recent years, including skeleton engineering, pore surface engineering, host-guest chemistry and membrane fabrication. Moreover, the features of transmission or separation of molecules/ions based on COF membranes and corresponding applications are also introduced. In the last part, the challenges and prospects of the development of COF membranes are discussed.  相似文献   
93.
Chemiluminescence (CL) is a luminescence phenomenon originated by a “chemical reaction.” CL provides a basis for real-time imaging technology in materials science. In fact, a CL reaction is easily triggered in general and makes it possible to track its progress in a target material by highly sensitive photon detection. Recently, real-time CL imagings became breakthrough techniques for analyzing the molecular mechanisms of failures of polymeric materials and of reactions and phase transitions in soft crystals. In the CL imaging techniques, adamantylideneadamantane 1,2-dioxetane (Adox) has been adopted as a stable core structure of chemiluminophores. That is, Adox is an essential seed compound to design a chemiluminophore with a desired molecular function. To support developments of real-time CL imaging techniques, we review the chemistry of Adox as a representative stable chemiluminophore including scientific history and utilities of Adox and its derivatives.  相似文献   
94.
The S\begin{document}$_1$\end{document} state decay dynamics of 2-hydroxypyridine following UV excitation at a wavelength range of 276.9\begin{document}$-$\end{document}250.0 nm is investigated using femtosecond time-resolved photoelectron imaging technique. Based on pump wavelength dependence of the decay dynamics, a refined decay picture is proposed. At pump wavelength of 276.9 nm, the S\begin{document}$_1$\end{document} state is depopulated through intersystem crossing to lower triplet state(s). At 264.0 nm, both intersystem crossing to lower triplet state(s) and internal conversion to the ground state are in operation. At 250.0 nm, internal conversion to the ground state becomes dominated.  相似文献   
95.
Photovoltaic technology provides a promising approach for solar energy conversion. One significant factor limiting the efficiency is the poor light harvesting of solar energy, which is related to the mismatch between the energy distribution of photons and the absorption of semiconductor materials or dye. Light-conversion phosphors have been explored as spectral converters to improve the light-harvesting ability in sensitized solar cells. Many progressive studies have been conducted to expand the family of light-conversion phosphors and exploit their application in sensitized solar cells, bringing emerging opportunities to develop commercial sensitized solar cells. In this review, we survey the development of light-conversion phosphors in sensitized solar cells. First, the application and conversion mechanism of light-conversion phosphors, including up-conversion phosphors, down-conversion phosphors, up/down conversion phosphors, and long-lasting phosphors, are summarized in detail. After that, the challenging problems and possible solutions of applying light-conversion phosphors to sensitized solar cells are discussed. The review also highlights some new ideas in the development of sensitized solar cells and the application of light-conversion phosphors in other solar technology.  相似文献   
96.
Chitosan, a biopolymer possessing numerous interesting bioactivities and excellent technological properties, has received great attention from scientists in different fields including the food industry, pharmacy, medicine, and environmental fields. A series of recent studies have reported exciting results about improvement of the properties of chitosan using the Maillard reaction. However, there is a lack of a systemic review about the preparation, bioactivities and applications in food industry of chitosan-based Maillard reaction products (CMRPs). The presence of free amino groups in chitosan allows it to acquire some stronger or new functional properties via the Maillard reaction. The present review aims to focus on the current research status of synthesis, optimization and structural identification of CMRPs. The applications of CMRPs in the food industry are also discussed according to their biological and technological properties such as antioxidant, antimicrobial activities and inducing conformational changes of allergens in food. Some promising directions for future research are proposed in this review, aiming to provide theoretical guidance for the further development of chitosan and its derivatives.  相似文献   
97.
In the present study, a sunflower-like nanostructure array composed of a series of synaptic nanoparticles and nanospheres was manufactured through an efficient and low-cost colloidal lithography technique. The primary electromagnetic field contribution generated by the synaptic nanoparticles of the surface array structures was also determined by a finite-difference time-domain software to simulate the hotspots. This structure exhibited high repeatability and excellent sensitivity; hence, it was used as a surface-enhanced Raman spectroscopy (SERS) active substrate to achieve a rapid detection of ultra-low concentrations of Alpha-fetoprotein (AFP). This study demonstrates the design of a plasmonic structure with strong electromagnetic coupling, which can be used for the rapid detection of AFP concentration in clinical medicine.  相似文献   
98.
Small-target detection in infrared imagery with a complex background is always an important task in remote sensing fields. It is important to improve the detection capabilities such as detection rate, false alarm rate, and speed. However, current algorithms usually improve one or two of the detection capabilities while sacrificing the other. In this letter, an Infrared (IR) small target detection algorithm with two layers inspired by Human Visual System (HVS) is proposed to balance those detection capabilities. The first layer uses high speed simplified local contrast method to select significant information. And the second layer uses machine learning classifier to separate targets from background clutters. Experimental results show the proposed algorithm pursue good performance in detection rate, false alarm rate and speed simultaneously.  相似文献   
99.
In this work, Monte Carlo simulations are used to study the critical adsorption behaviors of flexible polymer chains under the action of an external driving force F parallel to an attractive flat surface. The critical adsorption temperature T_c decreases linearly with increasing F,indicating that the driving force suppresses the adsorption of polymer. The conformation of polymer is also affected by the driving force.However, the effect of F is dependent on the competition between the driving force and temperature. Under strong force or at low temperature,the polymer is stretched along the direction of the force, while under weak force or at high temperature, the polymer is not stretched. When the force is comparable to the temperature, the polymer may be stretched perpendicular to the driving force, and below T_c, we observe conformational transitions from parallel to perpendicular and again to parallel by decreasing the temperature. We found that the perpendicular stretched conformation leads the polymer chain to synchronously move along the direction of the driving force. Moreover, the conformational transitions are attributed to the competition and cooperation between the driving force and the temperature.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号