首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   22篇
  国内免费   61篇
化学   210篇
晶体学   1篇
力学   8篇
综合类   5篇
数学   97篇
物理学   101篇
  2023年   10篇
  2022年   8篇
  2021年   20篇
  2020年   19篇
  2019年   14篇
  2018年   12篇
  2017年   16篇
  2016年   22篇
  2015年   14篇
  2014年   20篇
  2013年   39篇
  2012年   54篇
  2011年   41篇
  2010年   18篇
  2009年   24篇
  2008年   15篇
  2007年   17篇
  2006年   16篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   8篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   4篇
  1988年   1篇
  1936年   1篇
排序方式: 共有422条查询结果,搜索用时 31 毫秒
121.
A highly sensitive and label-free impedimetric biosensor is achieved based on an adjunct probe attached nearby the capture probe. In this work, the adjunct probe was co-assembled on the surface of gold electrode with the capture probe hybridized with the reporter probe, and then 6-mercapto-1-hexanol was employed to block the nonspecific binding sites. When target DNA was added, the adjunct probe functioned as a fixer to immobilize the element of reporter probe displaced by the target DNA sequences and made the reporter probe approach the electrode surface, leading to effective inhibition of charge transfer. The increase in charge transfer resistance is related to the quantity of the target DNA in a wide range. The linear range for target DNA with specific sequences was from 0.1 nM to 0.5 μM with a good linearity (R = 0.9988) and a low detection limit of 6.3 pM. This impedimetric biosensor has the advantages of simplicity, sensitivity, good selectivity, and large dynamic range.  相似文献   
122.
Orthorhombic structural perovskite NdCrO3 nanocrystals with size of 60 nm were prepared by microemulsion method, and characterized by XRD, TEM, HRTEM, SEM, EDS and BET. The catalytic effect of the NdCrO3 for thermal decomposition of ammonium perchlorate (AP) was investigated by DSC and TG-MS. The results revealed that the NdCrO3 nanoparticles had effective catalysis on the thermal decomposition of AP. Adding 2% of NdCrO3 nanoparticles to AP decreased the temperature of thermal decomposition by 87° and increased the heat of decomposition from 590 to 1073 J g−1. Gaseous products of thermal decomposition of AP were NH3, H2O, O2, HCl, N2O, NO, NO2 and Cl2. The mechanism of catalytic action was based on the presence of superoxide ion O2 on the surface of NdCrO3, and the difference of thermal decomposition of AP with 2% of NdCrO3 and pure AP was mainly caused by the different extent of oxidation of ammonium.  相似文献   
123.
本文给出了仅用元的阶之集对二元域上小阶线性群及其自同构群的刻画.指出并纠正了文[5]中的错误.  相似文献   
124.
An amorphous,colorless,and highly transparent star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized from the poly(ethylene glycol)(PEG),pentaerythritol,and dichloromethane by Williamson reaction.FTIR and ~1H-NMR measurement demonstrated that the polymer repeating units were C[CH_2-OCH_2O-(CH_2CH_2O)_m-CH_2O-(CH_2CH_2O)_n-CH_2O]_4.The polymer host held well mechanical properties for pentaerythritol cross-linking.The gel polymer electrolytes based on Lithium...  相似文献   
125.
The H2O2/persulphate systems are of enormous environmental and commercial importance with the sulphate radical (SO4) being assumed as the oxidizing/bleaching species. We show that under normal conditions (air-saturated) no SO4 is produced and, most likely, a much longer-lived species, the adduct of O2 and the persulphate radical, is formed.  相似文献   
126.
Two new dibenzocyclooctene lignans, neglschisandrins A-B (1-2), were isolated from the stems of Schisandra neglecta. Their structures and stereochemistries were elucidated by spectroscopic methods, including 1D- and 2D-NMR and HR-ESI-MS techniques.  相似文献   
127.
《中国化学快报》2023,34(11):108370
Selective oxidation of biomass-derived monosaccharide into high value-added chemicals is highly desirable from sustainability perspectives. Herein, we demonstrate a surface-functionalized carbon nanotube-supported gold (Au/CNT-O and Au/CNT-N) catalyst for base-free oxidation of monosaccharide into sugar acid. Au/CNT-O and Au/CNT-N surfaces successfully introduced oxygen- and nitrogen-containing functional groups, respectively. The highest yields of gluconic acid and xylonic acid were 93.3% and 94.3%, respectively, using Au/CNT-N at 90 °C for 240 min, which is higher than that of using Au/CNT-O. The rate constants for monosaccharide decomposition and sugar acid formation in Au/CNT-N system were higher, while the corresponding activation energy was lower than in Au/CNT-O system. DFT calculation revealed that the mechanism of glucose oxidation to gluconic acid involves the adsorption and activation of O2, adsorption of glucose, dissociation of the formyl C-H bond and formation of O-H bond, and formation and desorption of gluconic acid. The activation energy barrier for the glucose oxidation over Au/CNT-N is lower than that of Au/CNT-O. The nitrogen-containing functional groups are more beneficial for accelerating monosaccharide oxidation and enhancing sugar acid selectivity than oxygen-containing functional groups. This work presents a useful guidance for designing and developing highly active catalysts for producing high-value-added chemicals from biomass.  相似文献   
128.
《中国化学快报》2023,34(10):108234
Finding improved therapeutic protocols against non-Hodgkin's lymphoma (NHL) remains an unmet clinical demand. Phototherapy is a promising alternative treatment for traditional clinical therapeutic methods, but the limited tissue penetration blocks the therapeutics. Inspired by the excellent physical and chemical properties of black phosphorus nanosheets (BPNSs), a fluorescence and thermal imaging guided photo-/sono-synergistic treatment platform BPNSs@PEG-SS-IR780/RGD is developed. This ingenious multifunctional theranostic platform not only exhibits outstanding photothermal conversion efficiency and highly efficient reactive oxygen species generation, but also has good biocompatibility, tumor-targeting and tumor microenvironment responsiveness. In addition, BPNSs@PEG-SS-IR780/RGD could actively target the tumor sites and generate excellent photothermal, photodynamic and sonodynamic therapeutic efficacy. Both in vitro and in vivo experiments indicate that BPNSs@PEG-SS-IR780/RGD can be a promising nanomaterial for NHL imaging and therapy. Taken together, this study not only expands the application field of black phosphorus materials, but also provides a possibility to design a new generation of NHL treatment regimens with clinical application potential.  相似文献   
129.
A novel electrochemical strategy for the detection of amantadine (AMD) has been developed based on the competitive host‐guest interaction of AMD and methylene blue (MB) with β‐cyclodextrin (β‐CD). Due to the host‐guest interaction, MB molecules can enter into the hydrophobic inner cavity of β‐CD, and the MB/β‐CD/poly(N‐acetylaniline)/glassy carbon electrode displays a remarkable reduction peak due to MB. In the presence of AMD, competitive association to β‐CD occurs and the MB molecules are displaced by AMD, resulting in a decrease of reduction peak current of MB. The difference value of the cathodic peak current showed a linear relationship with the AMD concentration.  相似文献   
130.
Nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides with novel adsorbents for aqueous Congo red removal were synthesized by a polyacrylamide gel method and studied for their phase structure, microstructure, adsorption performance, and multiferroic behavior. The phase structure and purity analysis revealed that the nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides presented a spinel-type cubic structure, and the formation of a secondary phase such as Cr2O3, MgO, ZnO, or Co3O4 was not observed. The microstructure characterization confirmed that the spinel-type MCr2O4 oxides grew from fine spherical particles to large rhomboid particles. Adsorption experiments of spinel-type MCr2O4 oxides for adsorption of Congo red dye were fitted well with the pseudo-second-order kinetics. The adsorption capacity of the ZnCr2O4 oxide (44.038 mg/g, pH 7, temperature 28 °C, initial dye concentration 30 mg/L) was found to be higher than that of MgCr2O4 oxide (43.592 mg/g, pH 7, temperature 28 °C) and CoCr2O4 oxide (28.718 mg/g, pH 7, temperature 28 °C). The effects of initial adsorbent concentration, initial dye concentration, pH, and temperature between the ZnCr2O4 oxide and Congo red dye at which optimal removal occurs, were performed. The thermodynamic studies confirmed that a high temperature favors the adsorption of Congo red dye onto ZnCr2O4 oxide studied. The nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides that exhibited high adsorption performance for adsorption of Congo red dye can be ascribed to the synergistic effect of electrostatic interaction, pore filling, and ion exchange. The present work suggested that the nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides have excellent adsorption performance and multiferroic behavior, which shows potential applications for removal of the Congo red dye from wastewater, magnetic memory recording media, magnetic sensor, energy collection and conversion device, and read/write memory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号