首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   865篇
  免费   155篇
  国内免费   171篇
化学   340篇
晶体学   16篇
力学   115篇
综合类   15篇
数学   366篇
物理学   339篇
  2024年   6篇
  2023年   33篇
  2022年   45篇
  2021年   44篇
  2020年   60篇
  2019年   53篇
  2018年   51篇
  2017年   69篇
  2016年   59篇
  2015年   65篇
  2014年   78篇
  2013年   129篇
  2012年   87篇
  2011年   79篇
  2010年   64篇
  2009年   63篇
  2008年   28篇
  2007年   35篇
  2006年   32篇
  2005年   16篇
  2004年   3篇
  2003年   19篇
  2002年   2篇
  2001年   14篇
  2000年   9篇
  1999年   12篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1991年   3篇
  1990年   1篇
  1989年   5篇
  1988年   5篇
  1957年   1篇
排序方式: 共有1191条查询结果,搜索用时 515 毫秒
41.
A series of rubber composites were prepared by blending styrene-butadiene rubber (SBR) latex and the different particle sized kaolinites. The thermal stabilities of the rubber composites were characterized using thermogravimetry, digital photography, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Kaolinite SBR composites showed much greater thermal stability when compared with that of the pure SBR. With the increase of kaolinite particle size, the pyrolysis products became much looser; the char layer and crystalline carbon content gradually decreased in the pyrolysis residues. The pyrolysis residues of the SBR composites filled with the different particle sized kaolinites showed some remarkable changes in structural characteristics. The increase of kaolinite particle size was not beneficial to form the compact and stable crystalline carbon in the pyrolysis process, and resulted in a negative influence in improving the thermal stability of kaolinite/SBR composites.  相似文献   
42.
This paper reports that Janus Au?Ni nanoparticles (JANNPs) can self‐assemble onto silica spheres in a novel way, which is different from that of single‐component isotropic nanoparticles. JANNPs modified with octadecylamine (ODA) assemble onto catechol‐modified silica spheres (SiO2?OH) to form a very special core–loop complex structure and finally the core–loop assemblies link each other to form large assemblies through capillary force and the hydrophobic interaction of the alkyl chains of ODA. The nanocomposites disassemble in the presence of vanillin and oleic acid because of the breakage of the catechol–metal link. Vanillin‐induced disassembly enables the JANNPs to reassemble into a core–loop structure upon ODA addition. The assembly of SiO2?OH and isotropic Ni or Fe3O4 particles generates traditional core–satellite structures. This unconventional self‐assembly can be attributed to the synergistic effect of Janus specificity and capillary force, which is also confirmed by the assembly of thiol‐terminated silica spheres (SH?SiO2) with anisotropic JANNPs, isotropic Au, and Ni nanoparticles. These results can guide the development of novel composite materials using Janus nanoparticles as the primary building blocks.  相似文献   
43.
《Tetrahedron: Asymmetry》2014,25(8):690-696
Considering the biological activity of l-theanine as a potent agonist of NMDA receptors, impacting on glutamatergic synapse activity, we have developed an asymmetric synthesis of new enantiomerically pure 4-substituted l-theanine derivatives. The key step is a stereospecific alkylation on a previously synthesized and correctly protected (S)-pyroglutamate.  相似文献   
44.
谭昌会  杨磊 《化学研究》2014,(2):161-166
以对苯二甲酸作为配体,利用水热法合成了含二维(2D)铅无机层的三维(3D)无机-有机杂化材料[Pb2Cl(1,4-BDC)1.5]n(1);利用红外光谱、电感耦合等离子体原子发射光谱、X-射线衍射表征了产物的结构,利用热重分析测定了其热稳定性.结果表明,[Pb2Cl(1,4-BDC)1.5]n属于单斜晶系,P21/c空间群,其晶格参数为:a=0.599 000(10)nm,b=1.185 29(2)nm,c=1.847 37(3)nm,β=91.778 0(10)°,V=1.310 98(4)nm3,Z=4,R1=0.032 0,wR2=0.089 4,Rint=0.043 6.就化合物1的分子结构而言,由Pb—X—Pb(X=O或Cl)链接形成的2D无机层通过对苯二甲酸配体连接,构筑成具有3D骨架的无机-有机杂化材料.  相似文献   
45.
Single crystal of lithium terbium tungstate LiTb(WO4)2 has been grown by the flux method. The crystal structure was refined from single-crystal X-ray data. It crystallizes in tetragonal system, space group I41/a with a = 5.1749(9), c = 11.1953(19) ?, V = 299.81(12) ?~3, Z = 2, Mr = 661.56, Dc = 7.328 g/cm^3, F(000) = 560, μ(MoKα) = 49.94 mm-1, R(F^2 > 2σ(F^2)) = 0.026 and wR(F^2) = 0.070. It features a typical scheelite-type structure composed of two-direction packing of isolated WO4 tetrahedra. Li and Tb atoms in the structure occupy the same crystallographic site. Moreover, a series of solid solution phosphors LiTb(1-x)Eux(WO4)2(x = 0.004~0.1) were synthesized by high temperature solid-state reactions. The phosphors could be effectively excited by a wavelength range from 379 to 487 nm, which matches well with the UV and near-UV LED chip. The emission color of the phosphor can be tuned from green, through yellow to red by simply adjusting the relative Eu3+ and Tb3+ concentration due to the Tb3+ to Eu3+ energy transfer.  相似文献   
46.
《中国化学快报》2020,31(8):2077-2082
The morphological and structural design provides an efficient protocol to optimize the performance of gas sensing materials. In this work, a gas sensor with high sensitivity for triethylamine (TEA) detection is developed based on p-type NiCo2O4 hierarchical microspheres. The NiCo2O4 microspheres, synthesized by a hydrothermal route, have a three-dimensional (3D) urchin-like structure assembled by nanorod building blocks. The structure-property correlation has been investigated by powder X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscope, scanning electron microscope, N2 adsorption-desorption tests and comprehensive gas sensing experiments. The influence of calcination temperature on the morphological structure and sensing performances has been investigated. Results reveal that the material annealed at 300 °C has a very large specific surface area of 125.27 m2/g, thereby demonstrating the best TEA sensing properties including high response and low limit of detection (145 ppb), good selectivity and stability. The further increase of the calcination temperature leads to the collapse of the 3D hierarchical structure with significantly decreased surface area, which is found to decline the sensing performances. This work indicates the promise of ternary p-type metal oxide nanostructures for application in highly sensitive gas sensors.  相似文献   
47.
《中国化学快报》2020,31(8):2063-2066
Graphene quantum dots (GQDs) have both the properties of graphene and semiconductor quantum dots, and exhibit stronger quantum confinement effect and boundary effect than graphene. In addition, the band gap of GQDs will transform to non-zero from 0 eV of graphene by surface functionalization, which can be dispersed in common solvents and compounded with solid materials. In this work, the SnO2 nanosheets were prepared by hydrothermal method. As the sensitizer, nitrogen-doped graphene quantum dots (N-GQDs) were prepared and composited with SnO2 nanosheets. Sensing performance of pristine SnO2 and N-GQDs/SnO2 were investigated with HCHO as the target gas. The response (Ra/Rg) of 0.1% N-GQDs/SnO2 was 256 for 100 ppm HCHO at 60 °C, which was about 2.2 times higher than pristine SnO2 nanosheet. In addition, the material also had excellent selectivity and low operation temperature. The high sensitivity of N-GQDs/SnO2 was attributed to the increase of active sites on materials surface and the electrical regulation of N-GQDs. This research is helpful to develop new HCHO gas sensor and expand the application field of GQDs.  相似文献   
48.
根据气体冷却服的特点,对不同进风型式下气体冷却服中空气流动与换热进行研究。建立了进气口加设挡板层、进气口带均流器型和直吹型3种型式气体冷却服(服装夹层)中冷却空气流动过程的数学模型。对气体的流动过程进行分析,结果表明:不同的进风型式对气体冷却服空气层的温度分布状况、平均气流流速、平均温度、对流散热量影响较大;其中进气口加设挡板层的服装空气夹层温度分布最均匀,进气直吹型的平均气流流速最大,对流散热效果最好。研究结果为气体冷却服进一步的布风优化设计提供了理论和应用依据。  相似文献   
49.
This paper simulates the NLR7301 airfoil limit cycle oscillation (LCO) caused by fluid–structure interaction (FSI) using Reynolds averaged Navier–Stokes equations (RANS) coupled with Spalart–Allmaras (S–A) one-equation turbulence model. A low diffusion E-CUSP (LDE) scheme with 5th order weighted essentially nonoscillatory scheme (WENO) is employed to calculate the inviscid fluxes. A fully conservative 4th order central differencing is used for the viscous terms. A fully coupled fluid–structural interaction model is employed. For the case computed in this paper, the predicted LCO frequency, amplitudes, averaged lift and moment, all agree excellently with the experiment performed by Schewe et al. The solutions appear to have bifurcation and are dependent on the initial fields or initial perturbation. The developed computational fluid dynamics (CFD)/computational structure dynamics (CSD) simulation is able to capture the LCO with very small amplitudes measured in the experiment. This is attributed to the high order low diffusion schemes, fully coupled FSI model, and the turbulence model used. This research appears to be the first time that a numerical simulation of LCO matches the experiment. The simulation confirms several observations of the experiment.  相似文献   
50.
We performed a further investigation on the Maxwell–Wagner (MW) relaxation-induced relaxor-like dielectric response characterized by a broad peak in the real part of the dielectric permittivity as a function of temperature. Based on the double-layer MW model formulated by Catalan et al. (2000) [10], an empirical formula was derived to describe the temperature dependence of the peak intensity. It was also found that the temperature dependence of the peak position can be characterized by an Arrhenius-like relation. The differences between the true relaxor and MW-related relaxor behaviours are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号