首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3006篇
  免费   232篇
  国内免费   32篇
化学   2600篇
晶体学   23篇
力学   109篇
数学   63篇
物理学   475篇
  2024年   4篇
  2023年   71篇
  2022年   44篇
  2021年   65篇
  2020年   136篇
  2019年   44篇
  2018年   65篇
  2017年   87篇
  2016年   143篇
  2015年   127篇
  2014年   158篇
  2013年   178篇
  2012年   256篇
  2011年   278篇
  2010年   160篇
  2009年   148篇
  2008年   186篇
  2007年   196篇
  2006年   224篇
  2005年   199篇
  2004年   86篇
  2003年   41篇
  2002年   41篇
  2001年   53篇
  2000年   15篇
  1999年   59篇
  1998年   37篇
  1997年   27篇
  1996年   14篇
  1995年   14篇
  1994年   11篇
  1993年   11篇
  1992年   5篇
  1991年   10篇
  1990年   4篇
  1989年   10篇
  1988年   56篇
  1987年   6篇
  1976年   1篇
排序方式: 共有3270条查询结果,搜索用时 31 毫秒
61.
The problem of obtaining the first and second derivatives of the profile of a pendant droplet is formulated as an integral equation of the first kind. This equation is solved by Tikhonov regularization in which the method of general cross validation is used to guide the selection of the regularization parameter. These derivatives are converted into mean curvature as a function of droplet height. Surface tension is then obtained by regression computation between the mean curvature and two possible algebraic expressions suggested by the Laplace-Young equation. This way of obtaining surface tension is demonstrated by applying it to a number of published droplet profiles. Some of the problems encountered are discussed and solutions suggested.  相似文献   
62.
Self-assembling of metallic nanoparticles to form well-defined nanostructured structures is a field that has been receiving considerable research interest in recent years. In this field, DNA is a commonly used linker molecule to direct the assembly of the nanoscale building blocks because of its unique recognition capabilities, mechanical rigidity, and physicochemical stability. This study reported our novel approach to generate gold nanoparticle-DNA conjugates bearing specially designed DNA linker molecules that can be used as building blocks to construct nanoassemblies with precisely controlled structure or as nanoprobes for quantitative DNA sequence detection analysis. In our approach, gold nanoparticle-DNA conjugates bearing a specific number of long double-stranded DNA strands were prepared by gel electrophoresis. A restriction endonuclease enzyme was then used to manipulate the length of the nanoparticle-bound DNA. This enzymatic cleavage was confirmed by gel electrophoresis, and digestion efficiency of 90% or more was achieved. With this approach, nanoparticle conjugates bearing a specific number of strands of short DNA with less than 20-base can be achieved.  相似文献   
63.
《Fluid Phase Equilibria》2006,242(2):123-128
The kinetic data of methane hydrate dissociation at various temperatures and pressures were measured in a sapphire cell apparatus by depressurizing method. When the temperature was higher than 0 °C, the experimental results showed that the hydrate dissociation rate was controlled by intrinsic dissociation reaction. When the temperature was lower than 0 °C, water generated from the hydrate dissociation would transform into ice rapidly at the surface of hydrate crystal. The released gas diffused from the hydrate and ice mixture to the bulk of gas phase. With the hydrate continuous dissociation, the boundary of ice–hydrate moved toward water/ice phase. The hydrate dissociation was controlled by gas diffusion, and the hydrate dissociation process was treated as a moving boundary problem. Corresponding kinetic models for hydrate dissociation were established and good agreements with experimental data were achieved.  相似文献   
64.
The partial oxidation of methanol and ethanol on silica-supported vanadium oxide catalysts was studied using temperature-programmed desorption (TPD), Raman spectroscopy, and diffuse reflectance infrared spectroscopy (DRIFTS). Methanol TPD results for V2O5/SiO2 samples as a function of vanadia loading in conjunction with X-ray diffraction data and Raman spectra indicated that dispersed vanadia on silica agglomerates into vanadia crystallites during a CH3OH TPD experiment. For ethanol-dosed samples, agglomeration of the dispersed vanadia was less severe, and it was possible to measure the activation energy for the dehydrogenation of adsorbed ethoxides to produce CH3CHO. Assuming a preexponential factor of 10(13) s(-1), the activation energy for this reaction was estimated to be 132 kJ/mol. The results of this study further demonstrate that there is a relatively weak interaction between vanadia and silica and suggest that adsorbed methoxide species help facilitate agglomeration of dispersed vanadia.  相似文献   
65.
Magnetic cobalt nanowire thin films   总被引:1,自引:0,他引:1  
Two-dimensional (2D) and three-dimensional (3D) magnetic cobalt nanowire thin films with tunable 3-10 nm wire diameters have been electrodeposited using mesoporous silica templates containing 2D hexagonal or 3D cubic pore channels. As compared to bulk cobalt films, the cobalt nanowire thin films exhibit enhanced coercivities and controllable magnetic anisotropy through tuning of the mesostructure and dimension of the nanowires. Such novel magnetic nanowire thin films may provide a new platform for high-density information storage applications.  相似文献   
66.
We present the results of acid–base experiments performed at the single ion (H+ or OH) limit in ∼6 aL volume nanopores incorporating electrochemical zero-mode waveguides (E-ZMWs). At pH 3 each E-ZMW nanopore contains ca. 3600H+ ions, and application of a negative electrochemical potential to the gold working electrode/optical cladding layer reduces H+ to H2, thereby depleting H+ and increasing the local pH within the nanopore. The change in pH was quantified by tracking the intensity of fluorescein, a pH-responsive fluorophore whose intensity increases with pH. This behavior was translated to the single ion limit by changing the initial pH of the electrolyte solution to pH 6, at which the average pore occupancy 〈npore ∼3.6H+/nanopore. Application of an electrochemical potential sufficiently negative to change the local pH to pH 7 reduces the proton nanopore occupancy to 〈npore ∼0.36H+/nanopore, demonstrating that the approach is sensitive to single H+ manipulations, as evidenced by clear potential-dependent changes in fluorescein emission intensity. In addition, at high overpotential, the observed fluorescence intensity exceeded the value predicted from the fluorescence intensity-pH calibration, an observation attributed to the nucleation of H2 nanobubbles as confirmed both by calculations and the behavior of non-pH responsive Alexa 488 fluorophore. Apart from enhancing fundamental understanding, the approach described here opens the door to applications requiring ultrasensitive ion sensing, based on the optical detection of H+ population at the single ion limit.

Visualizing dynamic change in the number of protons during electroreduction of protons in attoliter volume zero-mode waveguides.  相似文献   
67.
The folding behavior of five different amine-functionalized m-poly(phenyleneethynylene) (m-PPE) oligomers containing 24 phenyl rings (12 residues, where a residue includes 2 phenyl rings) in water was examined by using a combination of molecular dynamics (MD) and replica exchange molecular dynamics (REMD) simulation techniques. The REMD method employed the highly parallelized GROMACS MD software and a modified OPLS-AA force field to simulate 44 replicas of each solvated system in parallel, with temperatures ranging from 300 to 577 K. Our results showed that the REMD method was more effective in predicting the helical conformation of the m-PPE in water, from an extended structure, than canonical MD methods in the same simulation time. Furthermore, we observed from canonical MD simulations of the explicitly solvated helical m-PPEs at 300 K that the radius of gyration, average helix inner diameter, and average helix pitch of the helical structure all pass through a minima when the side group is R = OC(2)H(5) as R is changed from R = H through OC(4)H(9).  相似文献   
68.
Hepatitis B core antigen (HBcAg) expressed in Escherichia coli is able to self‐assemble into large and small capsids comprising 240 (triangulation number T = 4) and 180 (triangulation number T = 3) subunits, respectively. Conventionally, sucrose density gradient ultracentrifugation and SEC have been used to separate these capsids. However, good separation of the large and small particles with these methods is never achieved. In the present study, we employed a simple, fast, and cost‐effective method to separate the T = 3 and T = 4 HBcAg capsids by using native agarose gel electrophoresis followed by an electroelution method (NAGE‐EE). This is a direct, fast, and economic method for isolating the large and small HBcAg particles homogenously based on the hydrodynamic radius of the spherical particles. Dynamic light scattering analysis demonstrated that the T = 3 and T = 4 HBcAg capsids prepared using the NAGE‐EE method are monodisperse with polydispersity values of ~15% and ~13%, respectively. ELISA proved that the antigenicity of the capsids was not affected in the purification process. Overall, NAGE‐EE produced T = 3 and T = 4 capsids with a purity above 90%, and the recovery was 34% and 50%, respectively (total recovery of HBcAg is ~84%), and the operation time is 15 and 4 times lesser than that of the sucrose density gradient ultracentrifugation and SEC, respectively.  相似文献   
69.
Cultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production. The results indicated that all five of the tested phytohormones (indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted microalgal growth. In particular, hormone treatment increased biomass production by 54 to 69 % relative to the control growth medium (Tris–acetate–phosphate, TAP). Phytohormone treatments also affected microalgal cell morphology but had no effect on the yields of fatty acid methyl esters (FAMEs) as a percent of biomass. We also tested the effect of these phytohormones on microalgal growth in nitrogen-limited media by supplementation in the early stationary phase. Maximum cell densities after addition of phytohormones were higher than in TAP medium, even when the nitrogen source was reduced to 40 % of that in TAP medium. Taken together, our results indicate that phytohormones significantly increased microalgal growth, particularly in nitrogen-limited media, and have potential for use in the development of efficient microalgal cultivation for biofuel production.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号