首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22991篇
  免费   1818篇
  国内免费   4483篇
化学   25081篇
晶体学   235篇
力学   385篇
综合类   26篇
数学   187篇
物理学   3378篇
  2024年   64篇
  2023年   1590篇
  2022年   955篇
  2021年   1111篇
  2020年   1610篇
  2019年   1062篇
  2018年   1100篇
  2017年   1148篇
  2016年   1415篇
  2015年   1456篇
  2014年   1833篇
  2013年   2262篇
  2012年   2015篇
  2011年   1867篇
  2010年   1358篇
  2009年   1316篇
  2008年   966篇
  2007年   1098篇
  2006年   1129篇
  2005年   644篇
  2004年   440篇
  2003年   450篇
  2002年   372篇
  2001年   536篇
  2000年   291篇
  1999年   473篇
  1998年   325篇
  1997年   157篇
  1996年   90篇
  1995年   72篇
  1994年   6篇
  1993年   2篇
  1992年   6篇
  1990年   17篇
  1989年   1篇
  1988年   3篇
  1986年   24篇
  1985年   11篇
  1984年   6篇
  1983年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1973年   5篇
  1972年   1篇
  1960年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
本文以咪唑衍生物为配体,通过水热合成法与钴离子制备出两个配位聚合物:{[Co(DTA)(1,4-DIB)(H2O)]·H2O}n(1)和[Co(DTA)(1,3-BMIB)]n(2)(1,4-DIB=1,4-二(1H-咪唑-1-基)苯; 1,3-BMIB=1,3-二(4-甲基-1H-咪唑-1-基)苯;H2DTA=2,5-二甲氧基对苯二甲酸)。利用X射线单晶衍射、粉末衍射、热失重、元素分析、红外光谱以及固体紫外-可见光谱等对两个配合物进行了表征。结构分析证实配合物1和2是通过二维结构堆积成的三维超分子化合物。粉末衍射测试则显示两个配合物在水中有很好的稳定性。固体紫外-可见光谱显示两个配合物属半导体材料,对紫外-可见光有很强的吸收作用。在光催化实验中,配合物1和2可加快亚甲基蓝的降解速度。  相似文献   
2.
Lin  Yu  Wu  Yeyu  Tan  Xuecai  Wu  Jiawen  Huang  Kejing  Mi  Yan  Ou  Panpan  Wei  Fucun 《Journal of Solid State Electrochemistry》2022,26(4):959-971
Journal of Solid State Electrochemistry - An ultrasensitive “signal-off–on” electrochemiluminescence (ECL) biosensor is constructed based on f1-TiO2/g-C3N4/PDA for thrombin...  相似文献   
3.
At present, the reactivity of cyclic alkanes is estimated by comparison with acyclic hydrocarbons. Due to the difference in the structure of cycloalkanes and acycloalkanes, the thermodynamic data obtained by analogy are not applicable. In this study, a molecular beam sampling vacuum ultraviolet photoionization time-of-flight mass spectrometer (MB-VUV-PI-TOFMS) was applied to study the low-temperature oxidation of cyclopentane (CPT) at a total pressure range from 1–3 atm and low-temperature range between 500 and 800 K. Low-temperature reaction products including cyclic olefins, cyclic ethers, and highly oxygenated intermediates (e. g., ketohydroperoxide KHP, keto-dihydroperoxide KDHP, olefinic hydroperoxides OHP and ketone structure products) were observed. Further investigation of the oxidation of CPT – electronic structure calculations – were carried out at the UCCSD(T)-F12a/aug-cc-pVDZ//B3LYP/6-31+ G(d,p) level to explore the reactivity of O2 molecules adding sequentially to cyclopentyl radicals. Experimental and theoretical observations showed that the dominant product channel in the reaction of CPT radicals with O2 is HO2 elimination yielding cyclopentene. The pathways of second and third O2 addition – the dissociation of hydroperoxide – were further confirmed. The results of this study will develop the low-temperature oxidation mechanism of CPT, which can be used for future research on accurately simulating the combustion process of CPT.  相似文献   
4.
《中国化学快报》2022,33(8):3797-3801
In this work, Z-scheme V2O5 loaded fluorinated inverse opal carbon nitride (IO F-CN/V2O5) was synthesized as a product of ternary collaborative modification with heterostructure construction, element doping and inverse opal structure. The catalyst presented the highest photocatalytic activity and rate constant for degradation of typical organic pollutants Rhodamine B (RhB) and was also used for the efficient removal of antibiotics, represented by norfloxacin (NOR), sulfadiazine (SD) and levofloxacin (LVX). Characterizations confirmed its increased specific surface area, narrowed bandgap, and enhanced visible light utilization capacity. Further mechanism study including band structure study and electron paramagnetic resonance (EPR) proved the successful construction of Z-scheme heterojunction, which improved photo-generated charge carrier migration and provide sufficient free radicals for the degradation process. The combination of different modifications contributed to the synergetic improvement of removal efficiency towards different organic pollutants.  相似文献   
5.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
6.
In this paper, we studied commercially available precipitated rice husk silica (RHS) with conventional precipitated silica, which has nearly the same surface area, and replaced part of the carbon black with RHS and conventional silica in a basic tread formulation. All formulations were mixed with the same amount of filler during the study. Silica was used at 15, 30 and 50 phr loading, and part of the carbon black was replaced by silica. Compound curing characteristics, physical properties, rebound resilience, heat generation, abrasion loss, dynamic properties and morphology were analyzed. The results indicated that RHS demonstrated compound properties comparable to those of conventional silica. As part of the carbon black was replaced with conventional silica, a slower cure rate, higher rebound resilience, lower heat generation, lower abrasion loss, and lower tan delta were observed with no significant change in physical properties, but some changes in physical properties were observed using one way ANOVA analysis. We found the same trend when replacing part of the carbon black with RHS, such as a slower cure rate, higher rebound resilience, lower heat generation, lower abrasion loss, and lower tan delta with no significant change in physical properties, but some changes in physical properties were observed using one way ANOVA. This sustainable material could be used to replace conventional silica in tire compounding, as well as to replace a portion of carbon black with RHS for improved heat build-up, rolling resistance, and abrasion loss.  相似文献   
7.
Solar-driven interfacial vaporization by localizing solar-thermal energy conversion to the air−water interface has attracted tremendous attention. In the process of converting solar energy into heat energy, photothermal materials play an essential role. Herein, a flexible solar-thermal material di-cyan substituted 5,12-dibutylquinacridone (DCN−4CQA)@Paper was developed by coating photothermal quinacridone derivatives on the cellulose paper. The DCN−4CQA@Paper combines desired chemical and physical properties, broadband light-absorbing, and shape-conforming abilities that render efficient photothermic vaporization. Notably, synergetic coupling of solar-steam and solar-electricity technologies by integrating DCN−4CQA@Paper and the thermoelectric devices is realized without trade-offs, highlighting the practical consideration toward more impactful solar heat exploitation. Such solar distillation and low-grade heat-to-electricity generation functions can provide potential opportunities for fresh water and electricity supply in off-grid or remote areas.  相似文献   
8.
Photoelectrochemical (PEC) cytosensors, a combination of the PEC process and the living-cell assay, have emerged as a powerful tool in the analytical and biological science. This mini review provides a brief introduction of this arena and summaries the key steps about the development of PEC cytosensors with representative examples, followed by future prospects based on our own opinions.  相似文献   
9.
In this study, we designed a series of pyrene-based donor-π-donor-π-acceptor compounds (HPTC1-HPTC7) by structural tailoring the reference compound (HPTC) using acceptor units. Nonlinear optical (NLO) properties, frontier molecular orbitals (FMOs), natural bonding orbital (NBO), transition density matric (TDM) analysis, and absorption spectra of reference and proposed derivatives were calculated at M06/6-31G(d,p) functional. All the designed compounds have smaller energy bandgaps than the HPTC compound. Moreover, the designed compounds exhibited larger global softness values than the reference. The absorption maxima of HPTC2, HPTC3, and HPTC7 are blue shifted with respect to HPTC. NBO analysis revealed that prolonged hyper conjugative associations and strong interactions between the donor (π) and acceptor (π*) moieties play a crucial part in their stabilization. The FMO and NBO findings supported the NLO responses of entitled compounds, and consequently, the linear and nonlinear properties of designed derivatives elevate compared to the reference molecule. Promisingly, the NLO response for HPTC7 comprises of highest values of <α>, βtotal and < γ > as 1.92 × 10?22 esu, 1.95 × 10?27 esu, and 4.69 × 107 (a.u). This NLO behavior shows push–pull NLO chromophores for HPTC7 predicting its role in pursuing NLO materials for optoelectronic applications.  相似文献   
10.
Incorporating nanoscale Si into a carbon matrix with high dispersity is desirable for the preparation of lithium-ion batteries (LIBs) but remains challenging. A space-confined catalytic strategy is proposed for direct superassembly of Si nanodots within a carbon (Si NDs⊂C) framework by copyrolysis of triphenyltin hydride (TPT) and diphenylsilane (DPS), where Sn atomic clusters created from TPT pyrolysis serve as the catalyst for DPS pyrolysis and Si catalytic growth. The use of Sn atomic cluster catalysts alters the reaction pathway to avoid SiC generation and enable formation of Si NDs with reduced dimensions. A typical Si NDs⊂C framework demonstrates a remarkable comprehensive performance comparable to other Si-based high-performance half LIBs, and higher energy densities compared to commercial full LIBs, as a consequence of the high dispersity of Si NDs with low lithiation stress. Supported by mechanic simulations, this study paves the way for construction of Si/C composites suitable for applications in future energy technologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号