首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   651篇
  免费   20篇
  国内免费   1篇
化学   398篇
晶体学   11篇
力学   3篇
数学   65篇
物理学   195篇
  2023年   6篇
  2022年   11篇
  2021年   14篇
  2020年   17篇
  2019年   10篇
  2018年   10篇
  2017年   10篇
  2016年   25篇
  2015年   14篇
  2014年   45篇
  2013年   49篇
  2012年   44篇
  2011年   40篇
  2010年   28篇
  2009年   31篇
  2008年   34篇
  2007年   19篇
  2006年   29篇
  2005年   27篇
  2004年   24篇
  2003年   20篇
  2002年   13篇
  2001年   14篇
  2000年   12篇
  1999年   10篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   13篇
  1994年   5篇
  1993年   5篇
  1992年   7篇
  1990年   2篇
  1989年   7篇
  1987年   6篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   7篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1972年   5篇
  1936年   4篇
排序方式: 共有672条查询结果,搜索用时 484 毫秒
31.
32.
Application of typical HDX methods to examine intrinsically disordered proteins (IDP), proteins that are natively unstructured and highly dynamic at physiological pH, is limited because of the rapid exchange of unprotected amide hydrogens with solvent. The exchange rates of these fast exchanging amides are usually faster than the shortest time scale (10 s) employed in typical automated HDX-MS experiments. Considering the functional importance of IDPs and their association with many diseases, it is valuable to develop methods that allow the study of solution dynamics of these proteins as well as the ability to probe the interaction of IDPs with their wide range of binding partners. Here, we report the application of time window expansion to the millisecond range by altering the on-exchange pH of the HDX experiment to study a well-characterized IDP; the activation domain of the nuclear receptor coactivator, peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). This method enabled mapping the regions of PGC-1α that are stabilized upon binding the ligand binding domain (LBD) of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ). We further demonstrate the method’s applicability to other binding partners of the IDP PGC-1α and pave the way for characterizing many other biologically important ID proteins.
Figure
?  相似文献   
33.
In this paper, 1,2-bis(2-acetamido-6-pyridyl)ethane, receptor 1, having an ethylene spacer is reported to recognise dicarboxylic acids. The binding study in the solution phase is carried out using 1H NMR (1:1) and UV–vis experiments and in the solid phase by single-crystal X-ray analysis. In 1H NMR, the downfield shifts of specific amide protons of receptor 1 in 1:1 complexes of receptor and guest diacids, and in the UV–vis experiment, the appearance of an isosbestic point as well as significant binding constants are observed, which thus unambiguously support the complexation of receptor 1 with dicarboxylic acids in solution. Receptor 2, simple 2-acetamido-6-methylpyridine, has lower binding constants than receptor 1 due to cooperative binding of two pyridine amide groups with two acid groups of diacids. In the solid phase, the ditopic receptor 1 shows a grid-like polymeric hydrogen-bonded network that changes to a polymeric wave-like 1:1 anti-perpendicular network instead of the synsyn polymeric 1:1 (Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett. 2005 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 46, 7187–7191), antianti polymeric 1:1 (Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem. 2006 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 18, 571–574; Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm. 2008, 10, 507–517; Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron 2008, 64, 6426–6433), synsyn 2:2 (Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc. 1997 (a) Garcia-Tellado, F., Goswami, S., Chang, S.K., Geib, S.J. and Hamilton, A.D. 1990. J. Am. Chem. Soc., 112: 73937394. (b) Geib, S.J.; Vicent, C.; Fan, E.; Hamilton, A.D. Angew. Chem. Int. Ed. Engl.1993, 32, 119–121. (c) Garcia-Tellado, F.; Geib, S.J.; Goswami, S.; Hamilton, A.D. J. Am. Chem. Soc.1991, 113, 9265–9269. (d) Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc.1997, 119, 2777–2783. (e) Moore, G.; Papamicaël, C.; Levacher, V.; Bourguignon, J.; Dupas, G. Tetrahedron2004, 60, 4197–4204. (f) Korendovych, I.V.; Cho, M.; Makhlynets, O.V.; Butler, P.L.; Staples, R.J.; Rybak-Akimova, E.V. J. Org. Chem.2008, 73, 4771–4782. (g) Ghosh, K.; Masanta, G.; Fröhlich, R.; Petsalakis, I.D.; Theodorakopoulos, G. J. Phys. Chem. B2009, 113, 7800–7809 [Google Scholar], 119, 2777–2783) or topbottom-bound 1:1 (Garcia-Tellado, F.; Goswami, S.; Chang, S.K.; Geib, S.J.; Hamilton, A.D. J. Am. Chem. Soc. 1990 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 112, 7393–7394) co-crystals.

  相似文献   
34.
A guanidine-based fluorescent receptor has been synthesised to study its binding behaviour towards anions (F, Cl, Br, I and AcO). The two donor N–H bonds of the receptor do not point in the same direction; rather, one N–H bond is intramolecularly hydrogen-bonded with the carbonyl oxygen atom. The nature of the donor–acceptor (DA) arrangement induces moderate binding properties. The binding behaviour towards monocarboxylic acids (benzoic acid and phenylacetic acid) is also compared. The binding behaviour of receptor 1 towards the F anion is higher among the anions studied, whereas in the case of monocarboxylic acid, the binding constant with phenylacetic acid is higher than benzoic acid.  相似文献   
35.
The influences of fluorines in chemistry have emerged as a breakthrough in various arenas of bio-organic and medicinal chemistry. But its incorporation in β-turn design and its implications for supramolecular chemistry remains in a rudimentary stage. Inspired by the diversity displayed by the isomers of mono-fluorinated phenylalanine in biological sciences, here our effort is to modulate the solid state conformational analysis of three terminally protected synthetic tripeptides Boc-(Y)-F-Phe-Aib-Xaa-OMe, where (Y is (2)-F-Phe, Xaa; Leu in peptide I, (3)-F-Phe, Xaa; Leu in peptide II and (4)-F-Phe, Xaa; Ile in peptide III). Interestingly, all the three peptides display a conformational preference for β-turns, stabilized by 4→1 intramolecular hydrogen bonding. Our investigation further demonstrates that mere interchange of positions of fluorines in mono-fluorinated phenylalanine in peptides I–III introduces significant diversity in supramolecular chemistry. X-ray crystallography sheds some light at atomic resolution. Furthermore, this supramolecular heterogeneous behavior is evident from the morphologies obtained from the materials of all the three peptides grown from acetone to petroleum ether solution, studied by field emission scanning electron microscopy. Thus, these monofluorinated peptides I–III may serve as prominent candidates in understanding the structure and function of misfolded disease causing peptides like prion and Alzheimer's amyloid.  相似文献   
36.
The title compounds, C11H11BrO3, (I), and C11H11NO5, (II), respectively, are derivatives of 6‐hydroxy‐5,7,8‐trimethylchroman‐2‐one substituted at the 5‐position by a Br atom in (I) and by a nitro group in (II). The pyranone rings in both molecules adopt half‐chair conformations, and intramolecular O—H...Br [in (I)] and O—H...Onitro [in (II)] hydrogen bonds affect the dispositions of the hydroxy groups. Classical intermolecular O—H...O hydrogen bonds are found in both molecules but play quite dissimilar roles in the crystal structures. In (I), O—H...O hydrogen bonds form zigzag C(9) chains of molecules along the a axis. Because of the tetragonal symmetry, similar chains also form along b. In (II), however, similar contacts involving an O atom of the nitro group form inversion dimers and generate R22(12) rings. These also result in a close intermolecular O...O contact of 2.686 (4) Å. For (I), four additional C—H...O hydrogen bonds combine with π–π stacking interactions between the benzene rings to build an extensive three‐dimensional network with molecules stacked along the c axis. The packing in (II) is much simpler and centres on the inversion dimers formed through O—H...O contacts. These dimers are stacked through additional C—H...O hydrogen bonds, and further weak C—H...O interactions generate a three‐dimensional network of dimer stacks.  相似文献   
37.
Papori Goswami 《合成通讯》2013,43(13):2271-2278
A wide range of substituted coumarin derivatives were synthesized by refluxing in acetonitrile, ethyl acetoacetate, and ethyl benzoyl acetate with a wide range of structurally diverse phenol derivatives within a short reaction time with a catalytic combination of pyridine dicarboxylic acid as organocatalyst and nanocrystalline ZnO.  相似文献   
38.
We report herein a simple and efficient approach to the synthesis of a variety of meso‐substituted purpurinimides. The reaction of meso ‐ substituted purpurinimide with N‐bromosuccinimide regioselectively introduced a bromo functionality at the 20‐position, which on further reaction with a variety of boronic acids under Suzuki reaction conditions yielded the corresponding meso‐substituted analogues. Interestingly, the free base and the metalated analogues showed remarkable differences in photosensitizing efficacy (PDT) and tumor‐imaging ability. For example, the free‐base conjugate showed significant in vitro PDT efficacy, but limited tumor avidity in mice bearing tumors, whereas the corresponding NiII derivative did not produce any cell kill, but showed excellent tumor‐imaging ability at a dose of 0.3 μmol kg?1 at 24, 48, and 72 h post‐injection. The limited PDT efficacy of the NiII analogue could be due to its inability to produce singlet oxygen, a key cytotoxic agent required for cell kill in PDT. Based on electrochemical and spectroelectrochemical data in DMSO, the first one‐electron oxidation (0.52 V vs. SCE) and the first one‐electron reduction (?0.57–0.67 V vs. SCE) of both the free base and the corresponding NiII conjugates are centered on the cyanine dye, whereas the second one‐electron reduction (?0.81 V vs. SCE) of the two conjugates is assigned to the purpurinimide part of the molecule. Reduction of the cyanine dye unit is facile and occurs prior to reduction of the purpurinimide group, which suggests that the cyanine dye unit as an oxidant could be the driving force for quenching of the excited triplet state of the molecules. An interaction between the cyanine dye and the purpurinimide group is clearly observed in the free‐base conjugate, which compares with a negligible interaction between the two functional groups in the NiII conjugate. As a result, the larger HOMO–LUMO gap of the free‐base conjugate and the corresponding smaller quenching constant is a reason to decrease the intramolecular quenching process and increase the production of singlet oxygen to some degree.  相似文献   
39.
We formulate a definition of isometric action of a compact quantum group (CQG) on a compact metric space, generalizing Banica's definition for finite metric spaces. For metric spaces (X,d)(X,d) which can be isometrically embedded in some Euclidean space, we prove the existence of a universal object in the category of the compact quantum groups acting isometrically on (X,d)(X,d). In fact, our existence theorem applies to a larger class, namely for any compact metric space (X,d)(X,d) which admits a one-to-one continuous map f:X→Rnf:XRn for some n   such that d0(f(x),f(y))=?(d(x,y))d0(f(x),f(y))=?(d(x,y)) (where d0d0 is the Euclidean metric) for some homeomorphism ?   of R+R+.  相似文献   
40.
We have developed a FRET-based ratiometric fluorescent probe for the detection of CN using a fluorescein–Zn–naphthalene ensemble (NFH·Zn2+). The sensing mechanism was ascribed by displacement approach. The chemosensor exhibits high selectivity and sensibility for CN. The speculation was supported by fluorescence emission spectra, UV–vis spectrum, 1H NMR titration experiments, and mass spectra. The interconversion of probe NFH and NFH·Zn2+ via the complexation/decomplexation by the modulation of Zn2+/CN mimics INHIBIT gate. In addition, it also shows an excellent performance in ‘dip stick’ method.  相似文献   
[首页] « 上一页 [1] [2] [3] 4 [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号