首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1100篇
  免费   55篇
  国内免费   6篇
化学   916篇
晶体学   10篇
力学   11篇
数学   119篇
物理学   105篇
  2023年   12篇
  2022年   22篇
  2021年   45篇
  2020年   22篇
  2019年   24篇
  2018年   25篇
  2017年   8篇
  2016年   42篇
  2015年   49篇
  2014年   43篇
  2013年   75篇
  2012年   88篇
  2011年   109篇
  2010年   48篇
  2009年   57篇
  2008年   96篇
  2007年   68篇
  2006年   47篇
  2005年   73篇
  2004年   53篇
  2003年   29篇
  2002年   34篇
  2001年   10篇
  2000年   4篇
  1999年   9篇
  1998年   8篇
  1997年   3篇
  1996年   10篇
  1995年   6篇
  1994年   7篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1161条查询结果,搜索用时 15 毫秒
51.
Electrophilic trisubstituted ethylenes, ring-disubstituted methyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2CH3, where R is 2,5-dichloro, 3,5-dichloro, 2,3-difluoro, 3-chloro-2-fluoro, 3-chloro-4-fluoro, 4-chloro-3-fluoro, 2-chloro-5-nitro, and 2-chloro-6-nitro were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-disubstituted benzaldehydes and methyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r1) for the monomers is 4-Cl-3-F (4.87) > 2,3-F2 (4.49) > 3-Cl-4-F (3.50) > 3-Cl-2-F (2.96) > 2-Cl-5-NO2 (2.02) > 2,5-Cl2 (1.54) > 2-Cl-6-NO2 (1.00) > 3,5-Cl2 (0.41). Relatively high Tg of the copolymers in comparison with that of polystyrene indicates a decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500ºC range with residue (1.5–34.5% wt), which then decomposed in the 500-800ºC range.  相似文献   
52.
Electrophilic trisubstituted ethylenes, phenoxy ring-substituted methyl 2-cyano-3-phenyl-2-propenoates, RPhCH=C(CN)CO2CH3, where R is 4-(4-BrC6H5O), 2-(4-ClC6H5O), 3-(4-ClC6H5O), 4-(3-ClC6H5O), 4-(4-ClC6H5O), 4-(4-FC6H5O), 2-(3-CH3OC6H5O), 2-(4-CH3OC6H5O), 3-(4-CH3OC6H5O), 4-(4-CH3OC6H5O), 3-(4-CH3C6H5O) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of phenoxy ring-substituted benzaldehydes and methyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r1) for the monomers is 4-(4-CH3OC6H5O) (6.07) > 3-(4-ClC6H5O) (3.38) > 3-(4-CH3OC6H5O) (2.78) > 4-(3-ClC6H5O) (2.77) > 2-(4-ClC6H5O) (2.29) > 3-(4-CH3C6H5O) (1.98) > 4-(4-FC6H5O) (1.92) > 4-(4-ClC6H5O) (1.89) > 2-(3-CH3OC6H5O) (1.39) > 2-(4-CH3OC6H5O) (0.90) > 4-(4-BrC6H5O) (0.77). Relatively high Tg of the copolymers in comparison with that of polystyrene indicates a decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200-500°C range with residue (2.5-8.0% wt), which then decomposed in the 500-800°C range.  相似文献   
53.
Novel copolymers of trisubstituted ethylene monomers, ring-substituted 1,1-dicyano-2-(1-naphthyl)ethylenes, RC10H6CH?C(CN)2 (where R is H, 2-OCH3, 4-OCH3) and 4-fluorostyrene were prepared by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r 1) for the monomers is (5.86) > 2-CH3O (4.28) > 4-CH3O (2.87). Relatively high Tg of the copolymers in comparison with that of poly(4-fluorostyrene) indicates a decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (7.3–7.7% wt.), which then decomposed in the 500–800°C range.  相似文献   
54.
The study concerns an experimental model using a SMA spring actuator for improving the whole performance of a barrier structure. The study is, specifically, focused on the thermal analysis of the SMA spring material and on determination of the SMA spring working time periods at different values of the activating electric current inducing different phase changing speeds.  相似文献   
55.
The cleavage of α-hydroxy tert-butyldimethylsilyl ether to diol takes place efficiently with LAH. It has been proposed that the reaction proceeds via intramolecular hydride transfer from the alkoxy aluminium hydride. In order to substantiate this, reduction of TBDMS ether with LAH in a variety of substrates was studied.  相似文献   
56.
A molecularly imprinted polymer (MIP) for the specific retention of neopterin has been developed. A set of 6 polymers was prepared by radical polymerization under different experimental condition using methacrylic acid as functional monomer and ethylene glycol dimethacrylate as crosslinker, with the aim to understand their influence on the efficiency of the MIP. The performance of each MIP was tested in batch experiments via their binding capacity. The MIP prepared in the presence of nickel ions in dimethylsulfoxide-acetonitrile mixture (P4) exhibited the highest binding capacity for neopterin (260 μmol per gram of polymer). A selectivity study with two other pteridines demonstrated the polymer P4 also to possess the best selectivity.
Figure
A molecularly imprinted polymer for the specific retention of neopterin was developed. A set of 6 polymers was prepared under different experimental condition. The performance of each MIP was tested through their binding capacity. The MIP P4 prepared in the presence of nickel ions exhibited the highest binding capacity  相似文献   
57.
The reactions of 2,2,2-trichloro-1-phenylethanone with various oxygen, carbon and sulfur nucleophiles were investigated with a view of widening the use of trichloroethanones as acylating agents.  相似文献   
58.
Non‐stabilized azomethine ylide 4 a reacts smoothly at room temperature with a variety of uncomplexed aromatic heterocycles and carbocycles on the condition that the ring contains at least one or two electron‐withdrawing substituents, respectively. Aromatic substrates, including pyridine and benzene derivatives, participate as 2 π components in [3+2] cycloaddition reactions and interact with one, two, or three equivalent(s) of the ylide, depending on their structure and substitution pattern. Thus, this process affords highly functionalized polycyclic structures that contain between one and three pyrrolidinyl ring(s) in useful yields. These results indicate that the site selectivity of the cycloaddition reactions strongly depends on both the nature and the positions of the substituents. In most cases, the second 1,3‐dipolar reaction occurs on the opposite face to the one that contains the first pyrrolidinyl ring. DFT calculations on model compounds indicate that a concerted mechanism features a low activation barrier.  相似文献   
59.
Organotin complexes of Schiff bases (derived from the condensation of hydrazides with salicylaldehyde derivatives) were prepared and their characterization was done using several spectroscopic techniques like FTIR, NMR (1H, 13C, and 119Sn) and mass spectrometry. The spectroscopic data of the ligands and their corresponding complexes revealed that the Schiff bases chelated to the tin metal in a tridentate manner through –ONO atoms (oxygen atom of the hydroxyl group of the salicylaldehydic derivatives, the nitrogen atom of azomethine group, and the oxygen atom of enolic group present in the carboxylic acid hydrazides). Around tin atom pentacoordinated geometry was exhibited. The synthesized ligands and their complexes have been assessed for their biological potency (antibacterial, antifungal and antioxidant using Ciprofloxacin, Fluconazole and Ascorbic acid as reference compounds) and few of the compounds showed optimistic activity. The ligands having electron withdrawing group attached showed greater antimicrobial activity as compared to the other ligands. The complexes showed the better activity than the ligands. The general trend followed by the complexes was diphenyl ?> ?dibutyl ?> ?dimethyl substituted complexes. Compound 11 was the most active against microbes. The antioxidant activity increased with electron donating group. The phenyl substituted complexes showed better activity as compared to the dibutyl and dimethyl substituted complexes. Compound 20 was the best antioxidant.  相似文献   
60.
Even though global health has been steadily improved, the global disease burden associated with communicable and non-communicable diseases extensively increased healthcare expenditure. The present COVID-19 pandemic scenario has again ascertained the importance of clinical diagnostics as a basis to make life-saving decisions. In this context, there is a need for developing next-generation integrated smart real-time responsive biosensors with high selectivity and sensitivity. The emergence of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas biosensing systems has shown remarkable potential for developing next-generation biosensors. CRISPR/Cas integrated electrochemical biosensors (E-CRISPR) stands out with excellent properties. In this opinionated review, we illustrate the rapidly evolving applications for E-CRISPR-integrated detection systems towards biosensing and the future scope associated with E-CRISPR based diagnostics.  相似文献   
[首页] « 上一页 [1] [2] [3] [4] [5] 6 [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号