首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2248篇
  免费   68篇
  国内免费   18篇
化学   1707篇
晶体学   33篇
力学   27篇
数学   273篇
物理学   294篇
  2022年   15篇
  2021年   23篇
  2020年   35篇
  2019年   26篇
  2018年   19篇
  2017年   24篇
  2016年   33篇
  2015年   41篇
  2014年   56篇
  2013年   116篇
  2012年   105篇
  2011年   153篇
  2010年   84篇
  2009年   61篇
  2008年   133篇
  2007年   140篇
  2006年   132篇
  2005年   150篇
  2004年   131篇
  2003年   101篇
  2002年   103篇
  2001年   33篇
  2000年   24篇
  1999年   26篇
  1998年   27篇
  1997年   24篇
  1996年   32篇
  1995年   18篇
  1994年   23篇
  1993年   24篇
  1992年   17篇
  1991年   29篇
  1990年   18篇
  1989年   12篇
  1988年   16篇
  1987年   11篇
  1986年   12篇
  1985年   20篇
  1984年   27篇
  1983年   15篇
  1982年   29篇
  1981年   20篇
  1980年   17篇
  1979年   23篇
  1978年   14篇
  1977年   15篇
  1976年   13篇
  1975年   14篇
  1974年   11篇
  1973年   12篇
排序方式: 共有2334条查询结果,搜索用时 593 毫秒
81.
An X-ray crystallographic study has shown that the complex (C6H5)2TlO2CC6F5(OPPh3) has a dimeric structure with unsymmetrical pentafluorobenzoate bridging (TlO 2.531 and 2.789 Å) but an exact crystallographic centre of symmetry. The pentafluorobenzoate groups are also unsymmetrically chelated to thallium (TlO 2.389 and 2.531 Å.), which overall has irregular six coordination.  相似文献   
82.
The reactions of a series of 5-alkyl-2-thiophenedithiocarboxylates with nickel(II) chloride afforded two types of complexes, blue nickel(II) complexes with two terminal dithiocarboxylate ligands, [Ni(S2CTR)2] and violet nickel(II) complexes with perthio- and dithiocarboxylate ligands, [Ni(S2CTR)(S3CTR)] (where T = 2,5-disubstituted thiophene, R = CnH2n+1, n = 4, 6, 8, 12, 16). The blue monomers are preferred for the shorter chains (C4 and C6) and the violet compounds form exclusively for the longer chains (C8, C12, and C16) in the alkylthiophene complexes. In addition to the above series, [Ni(S2CTCH3)2], was prepared in a one-pot reaction in THF and both the blue and violet products were isolated. It was possible to convert the blue complexes [Ni(S2CTR)2] (R = butyl, hexyl) into the corresponding violet complexes [Ni(S2CTR)(S3CTR)] after stirring in THF solutions for prolonged periods of time. Liquid-crystalline properties of these complexes were examined by DSC and POM. The violet complexes with C8 and C12 alkyl chains showed liquid-crystalline properties.  相似文献   
83.
Recent years have seen dramatic growth in our understanding of the biological roles of nitric oxide (NO). Yet, the fundamental underpinnings of its reactivities with transition metal centers in proteins and enzymes, the stabilities of their structures, and the relationships between structure and reactivity remains, to a significant extent, elusive. This is especially true for the so-called ferric heme nitrosyls ([FeNO](6) in the Enemark-Feltham scheme). The Fe-CO and C-O bond strengths in the isoelectronic ferrous carbonyl complexes are widely recognized to be inversely correlated and sensitive to structural, environmental, and electronic factors. On the other hand, the Fe-NO and N-O bonds in [FeNO](6) heme complexes exhibit seemingly inconsistent behavior in response to varying structure and environment. This report contains resonance Raman and density functional theory results that suggest a new model for FeNO bonding in five-coordinate [FeNO](6) complexes. On the basis of resonance Raman and FTIR data, a direct correlation between the nu(Fe)(-)(NO) and nu(N)(-)(O) frequencies of [Fe(OEP)NO](ClO(4)) and [Fe(OEP)NO](ClO(4)).CHCl(3) (two crystal forms of the same complex) has been established. Density functional theory calculations show that the relationship between Fe-NO and N-O bond strengths is responsive to FeNO electron density in three molecular orbitals. The highest energy orbital of the three is sigma-antibonding with respect to the entire FeNO unit. The other two comprise a lower-energy, degenerate, or nearly degenerate pair that is pi-bonding with respect to Fe-NO and pi-antibonding with respect to N-O. The relative sensitivities of the electron density distributions in these orbitals are shown to be consistent with all published indicators of Fe-N-O bond strengths and angles, including the examples reported here.  相似文献   
84.
This study was designed to provide more detailed information on the subcellular sites of binding of the porphycene, termed 9-capronyloxytetrakis (methoxyethyl) porphycene (CPO), with a fluorescence resonance energy transfer (FRET) technique. The proximity of CPO to two fluorescent probes was determined: nonyl acridine orange (NAO), a dye with specific affinity for the mitochondrial lipid cardiolipin, and dihexa-oxacarbocyanine iodide (DiOC6), an agent that labels the endoplasmic reticulum (ER). FRET spectra indicated energy transfer between DiOC6 and CPO but no significant transfer between NAO and CPO. These results confirm data obtained by fluorescence microscopy, suggesting a similar pattern of subcellular localization by CPO and DiOC6 but not by CPO and NAO. However, when cells containing CPO were irradiated and then loaded with NAO, FRET between the two fluorophores was observed. Hence, a relocalization of CPO can occur during irradiation. These data provide an explanation for recent studies on CPO-catalyzed photodamage to both ER and mitochondrial Bcl-2.  相似文献   
85.
The preparation of furo[3,2-b]indoles via Dieckmann cyclization is described. The precursor diesters were obtained from 3-hydroxy-1H-indole-2-carboxylic acid esters and methyl or ethyl bromoacetate. Reactions of the furo[3,2-b]indole enolic esters prepared are discussed.  相似文献   
86.
Detailed Fe vibrational spectra have been obtained for the heme model complex [Fe(TPP)(CO)(1-MeIm)] using a new, highly selective and quantitative technique, Nuclear Resonance Vibrational Spectroscopy (NRVS). This spectroscopy measures the complete vibrational density of states for iron atoms, from which normal modes can be calculated via refinement of the force constants. These data and mode assignments can reveal previously undetected vibrations and are useful for validating predictions based on optical spectroscopies and density functional theory, for example. Vibrational modes of the iron porphyrin-imidazole compound [Fe(TPP)(CO)(1-MeIm)] have been determined by refining normal mode calculations to NRVS data obtained at an X-ray synchrotron source. Iron dynamics of this compound, which serves as a useful model for the active site in the six-coordinate heme protein, carbonmonoxy-myoglobin, are discussed in relation to recently determined dynamics of a five-coordinate deoxy-myoglobin model, [Fe(TPP)(2-MeHIm)]. For the first time in a six-coordinate heme system, the iron-imidazole stretch mode has been observed, at 226 cm(-)(1). The heme in-plane modes with large contributions from the nu(42), nu(49), nu(50), and nu(53) modes of the core porphyrin are identified. In general, the iron modes can be attributed to coupling with the porphyrin core, the CO ligand, the imidazole ring, and/or the phenyl rings. Other significant findings are the observation that the porphyrin ring peripheral substituents are strongly coupled to the iron doming mode and that the Fe-C-O tilting and bending modes are related by a negative interaction force constant.  相似文献   
87.
Following implementation of the CLIA ‘88 laboratory regulations, the primary role of proficiency testing (external quality assessment, PT) in the U.S. has been widely viewed as one of assuring regulatory compliance. PT can also be an effective tool for detecting widespread analytical problems, subject to limitations based on the method of PT assigned value determination. A recent case study describes the role of two PT programs in detecting and resolving a calibration bias in the LeadCare blood lead analyzer, and illustrates the limitations of peer-group target determination in fulfilling that PT role.  相似文献   
88.
The spectral characteristics and the quantum yield of the fluorescence from the second excited singlet state S2 of the aromatic thioketone molecules xanthione (XS) and thioxanthione (TXS) have been determined in solution at room temperature and 77 K. In 3-methylpentane, the measured quantum yields are φf (295 K) = 5.1 × 10?3 and φf(77 K) = 1.0 × 10?2 for XS, and φf (295 K) = 1.5 × 10?3 and φf (77 K) = 2.5 × 10?3 for TXS. Using the Strickler-Berg expression for the radiative lifetime, the decay rate of S2 is derived. It is concluded that internal conversion S2 ? S1 is the dominating deactivation channel of S2 with k77 Knr(S2 ? S1) = 1.0 × 1010 s?1 for XS and k77 Knr (S2→S1) = 2.2 × 1010 s?1 for TXS. Between 295 and 77 K, φf increases by a factor of about 2 following an Arrhenius type expression. This temperature dependence of φf is considered to be intramolecular in nature and is attributed to a temperature sensitive rate constant knr(S2?S1) with an activation energy of 190 ± 20 cm?1 and a frequency factor knr = 3 × 1010 s?1 for the XS molecule in 3-methylpentane.  相似文献   
89.
We describe the preparation of a compound whose molecules consist of two metal sandwich stands carrying tentacles with affinity to metal surfaces and holding an axle that carries a dipolar or a nonpolar rotator. The dipolar rotor exists as three pairs of enantiomers, rapidly interconverting at room temperature. When mounted on a gold surface, each molecule represents a chiral altitudinal rotor, with the rotator axle parallel to the surface. The surface-mounted rotor molecules are characterized by several spectroscopic and imaging techniques. At any one time, in about one-third of the dipolar rotors the rotator is free to turn and the direction of its dipole can be flipped by the electric field applied by an STM tip, as revealed by differential barrier height imaging. Molecular dynamics calculations suggest that electric field normal to the surface causes members of one pair of enantiomers to rotate unidirectionally.  相似文献   
90.
Excessive exposure of solar ultraviolet (UV) radiation, particularly its UV-B component, to humans causes many adverse effects that include erythema, hyperplasia, hyperpigmentation, immunosuppression, photoaging and skin cancer. In recent years, there is increasing use of botanical agents in skin care products. Pomegranate derived from the tree Punica granatum contains anthocyanins (such as delphinidin, cyanidin and pelargonidin) and hydrolyzable tannins (such as punicalin, pedunculagin, punicalagin, gallagic and ellagic acid esters of glucose) and possesses strong antioxidant and anti-inflammatory properties. Recently, we have shown that pomegranate fruit extract (PFE) possesses antitumor promoting effects in a mouse model of chemical carcinogenesis. To begin to establish the effect of PFE for humans in this study, we determined its effect on UV-B-induced adverse effects in normal human epidermal keratinocytes (NHEK). We first assessed the effect of PFE on UV-B-mediated phosphorylation of mitogen-activated protein kinases (MAPK) pathway in NHEK. Immunoblot analysis demonstrated that the treatment of NHEK with PFE (10-40 microg/mL) for 24 h before UV-B (40 mJ/cm(2)) exposure dose dependently inhibited UV-B-mediated phosphorylation of ERKl/2, JNK1/2 and p38 protein. We also observed that PFE (20 microg/mL) inhibited UV-B-mediated phosphorylation of MAPK in a time-dependent manner. Furthermore, in dose- and time-dependent studies, we evaluated the effect of PFE on UV-B-mediated activation of nuclear factor kappa B (NF-kappaB) pathway. Using Western blot analysis, we found that PFE treatment of NHEK resulted in a dose- and time-dependent inhibition of UV-B-mediated degradation and phosphorylation of IkappaBalpha and activation of IKKalpha. Using immunoblot analysis, enzyme-linked immunosorbent assay and electrophoretic mobility shift assay, we found that PFE treatment to NHEK resulted in a dose- and time-dependent inhibition of UV-B-mediated nuclear translocation and phosphorylation of NF-kappaB/p65 at Ser(536). Taken together, our data shows that PFE protects against the adverse effects of UV-B radiation by inhibiting UV-B-induced modulations of NF-kappaB and MAPK pathways and provides a molecular basis for the photochemopreventive effects of PFE.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号