首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19542篇
  免费   3403篇
  国内免费   1851篇
化学   13576篇
晶体学   192篇
力学   1187篇
综合类   88篇
数学   2174篇
物理学   7579篇
  2024年   41篇
  2023年   407篇
  2022年   494篇
  2021年   698篇
  2020年   773篇
  2019年   763篇
  2018年   748篇
  2017年   596篇
  2016年   1003篇
  2015年   863篇
  2014年   1094篇
  2013年   1449篇
  2012年   1809篇
  2011年   1858篇
  2010年   1241篇
  2009年   1155篇
  2008年   1253篇
  2007年   1105篇
  2006年   1057篇
  2005年   854篇
  2004年   657篇
  2003年   465篇
  2002年   468篇
  2001年   360篇
  2000年   299篇
  1999年   429篇
  1998年   299篇
  1997年   318篇
  1996年   303篇
  1995年   265篇
  1994年   223篇
  1993年   231篇
  1992年   157篇
  1991年   169篇
  1990年   140篇
  1989年   102篇
  1988年   91篇
  1987年   73篇
  1986年   70篇
  1985年   54篇
  1984年   57篇
  1983年   30篇
  1982年   32篇
  1981年   23篇
  1980年   26篇
  1976年   16篇
  1975年   15篇
  1973年   15篇
  1968年   14篇
  1957年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
金属锂因具有极高的理论比容量(3860 mAh/g)和最低的电化学势(相对于标准氢电极为-3.04 V),被认为是下一代高比能锂离子电池的首选负极材料。然而,金属锂负极在电池循环过程中发生的刺状枝晶生长和体积变化等问题严重阻碍了其产业化应用进程。近年来研究表明,通过在金属锂中引入具有三维(3D)结构的宿主骨架,不但能有效抑制锂枝晶的生长,而且可以缓解金属锂负极的体积变化,从而提高金属锂电池的循环性能与安全性。因此,设计3D骨架/金属锂复合负极被认为是一种能有效解决金属锂问题的新兴策略。本文综述了热熔灌输法制备3D骨架/金属锂复合负极的研究进展。首先讨论了当前基于3D骨架的预存金属锂技术,然后着重分析了热熔灌输策略中3D骨架锂润湿性的影响因素,以及不同3D骨架修饰特征和改性方法。最后对3D骨架/金属锂复合负极和热熔灌输策略现存问题进行了总结并提出未来的发展方向。  相似文献   
962.
A novel magnetic covalent organic framework was synthesized via a one-step coating approach with solvothermal reaction employing 2,4,6-tris(4-aminophen-yl)-1,3,5-triazine and 2,4,6-triformylphloroglucinol as two building blocks by covalent bonding. The prepared magnetic covalent organic frameworks were properly characterized by different techniques and employed as adsorbents of magnetic solid-phase extraction. An analytical method was developed for the simultaneous determination of five fungicides in two Chinese herbal medicine samples via magnetic solid-phase extraction coupled to ultra high performance liquid chromatography with tandem mass spectrometry analysis. Under optimized magnetic solid-phase extraction conditions, the method exhibited satisfactory recoveries (74.0−109.6%) with relative standard deviations of 0.4−4.6%, low limits of detection (0.003−0.015 μg/kg), and good linearity (R2 > 0.9960). Compared with the traditional extraction method, the proposed method required a lower amount of adsorbent (3 mg) and extraction time (5 min). The adsorbent also had favorable reusability (not less than eight times). Therefore, the magnetic covalent organic frameworks could be a promising adsorbent for the extraction and quantitation of fungicides in Chinese herbal medicines.  相似文献   
963.
Metal organic frameworks have received great attention as the chiral stationary phase for racemic drug separation because of their fascinating structures and properties. However, the most homochiral metal organic frameworks were constructed by rare and precious chiral organic ligands. In this work, an achiral metal organic framework, together with a natural chiral selector carboxymethyl β-cyclodextrin built a synergistic separation system in the open tubular capillary electrochromatography. The novel coated columns were developed by inducing metal organic framework nanoparticles to grow on the imidazolyl functional capillary inner wall. The baseline separations of hydroxychloroquine, ofloxacin, and atenolol were achieved in the synergistic separation system. The effects of the concentration of chiral selector, pH, voltage, and the concentration of organic additives were studied. Compared with chiral selector auxiliary bare capillary, the resolutions of three drugs were remarkably improved. The relative standard deviations for the retention time of intraday (n = 6), interday (n = 6), and column-to-column were less than 2.1, 2.6, and 5.2%, respectively. These results demonstrate that affordable synergistic separation systems are prospective for racemic drug enantioseparation in capillary electrochromatography.  相似文献   
964.
In this work, we used time-sliced ion velocity imaging to study the photodissociation dynamics of MgO at \mbox{193 nm}. Three dissociation pathways are found through the speed and angular distributions of magnesium. One pathway is the one-photon excitation of MgO(X\begin{document}$^1\Sigma^+$\end{document}) to MgO(G\begin{document}$^1\Pi$\end{document}) followed by spin-orbit coupling between the G\begin{document}$^1\Pi$\end{document}, 3\begin{document}$^3\Pi$\end{document} and 1\begin{document}$^5\Pi$\end{document} states, and finally dissociated to the Mg(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{u}$\end{document})+O(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{g}$\end{document}) along the 1\begin{document}$^5\Pi$\end{document} surface. The other two pathways are one-photon absorption of MgO(A\begin{document}$^1\Pi$\end{document}) state to MgO(G\begin{document}$^1\Pi$\end{document}) and MgO(4\begin{document}$^1\Pi$\end{document}) state to dissociate into Mg(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{u}$\end{document})+O(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{g}$\end{document}) and Mg(\begin{document}$^1$\end{document}S\begin{document}$_\textrm{g}$\end{document})+O(\begin{document}$^1$\end{document}S\begin{document}$_\textrm{g}$\end{document}), respectively. The anisotropy parameters of the dissociation pathways are related to the lifetime of the vibrational energy levels and the coupling of rotational and vibronic spin-orbit states. The total kinetic energy analysis gives \begin{document}$D_0$\end{document}(Mg\begin{document}$-$\end{document}O)=21645\begin{document}$\pm$\end{document}50 cm\begin{document}$^{-1}$\end{document}.  相似文献   
965.
Catechol adsorbed on TiO2 is one of the simplest models to explore the relevant properties of dye-sensitized solar cells. However, the effects of water and defects on the electronic levels and the excitonic properties of the catechol/TiO2 interface have been rarely explored. Here, we investigate four catechol/TiO2 interfaces aiming to study the influence of coverage, water, and defects on the electronic levels and the excitonic properties of the catechol/TiO2 interface through the first-principles many-body Green's function theory. We find that the adsorption of catechol on the rutile (110) surface increases the energies of both the TiO2 valence band maximum and conduction band minimum by approximately 0.7 eV. The increasing coverage and the presence of water can reduce the optical absorption of charge-transfer excitons with maximum oscillator strength. Regarding the reduced hydroxylated TiO2 substrate, the conduction band minimum decreases greatly, resulting in a sub-bandgap of 2.51 eV. The exciton distributions in the four investigated interfaces can spread across several unit cells, especially for the hydroxylated TiO2 substrate. Although the hydroxylated TiO2 substrate leads to a lower open-circuit voltage, it may increase the separation between photogenerated electrons and holes and may therefore be beneficial for improving the photovoltaic efficiency by controlling its concentration. Our results may provide guidance for the design of highly efficient solar cells in future.  相似文献   
966.
Nitrogen-containing compounds, as an important class of chemicals, have been used widely in pharmaceuticals, materials synthesis. Transition metal-catalyzed reductive amination of an aldehyde or a ketone with ammonia or an amine has been proved to be an efficient and practical method for the preparation of nitrogen-containing compounds in academia and industry for a century. Given the above, several effective methods using transition metals have been developed in recent years. Noble transition metals like Pd, Pt, and Au-based catalysts have been predominately used in reductive amination. Because of their high prices, strict official regulations of residues in pharmaceuticals, and deleterious effects on the biological system, their industrial applications are severely hampered. With the increasing sustainable and environmental problems, the Earth-abundant transition metals including Ti, Fe, Co, Ni, and Zr have also been investigated for the reductive amination reaction and showed great potential to the advancement of sustainable and cost-effective reductive amination processes. This critical review will mainly summarize the work using Earth-abundant metals. The effects of different transition metals used in catalytic reduction amination were discussed and compared, and some suggestions were given. The last section highlights the catalytic activities of bi- and tri-metallic catalysts. Indeed, this latter family is very promising and simultaneously benefits from increased stability, and selectivity, compared to monometallic NPs, due to synergistic substrate activation. Few comprehensive reviews focusing on Earth-abundant transition metals catalyst has been published since 1948, although several authors reported some summaries dealing with one or the other part of this aspect. It is hoped that this critical review will inspire researchers to develop new efficient and selective earth-abundant metal catalysts for highly, environmentally sustainable reductive amination methods, as well as improve the pharmaceutical industry and related chemical synthesis company traditional method with the utilization of the green method widely.  相似文献   
967.
H2-SCR is served as the promising technology for the controlling of NOx emission, and the Pd-based derivative catalyst exhibited high NOx reduction performance. Effectively regulating the electronic configuration of the active component is favorable to the rational optimization of noble Pd. In this work, a series of Pr1-xCexMn1-yPdyO3@Ni were successfully synthesized and exhibited superior NO conversion efficiency at low temperatures. 92.7 % conversion efficiency was achieved at 200 °C over Pr0.9Ce0.1Mn0.9Pd0.1O3@Ni in the presence of 4 % O2 with a GHSV of 32000 h−1. Meanwhile, the outstanding performance was obtained in the resistance to SO2 (200 ppm) and H2O (8 %). Deduced from the results of XRD, Raman, XPS, and H2-TPR, the modification of d orbit states in palladium was confirmed originating from the incorporation in the B site of Pr0.9Ce0.1Mn0.9Pd0.1O3. The existence of higher valence (Pd3+ and Pd4+) than the bivalence in Pr0.9Ce0.1Mn0.9Pd0.1O3 catalyst was evidenced by XPS analysis. Our research provides a new sight into the H2-SCR through the higher utilization of Pd.  相似文献   
968.
Organic modifiers have shown promising potential for regulating the activity and selectivity of heterogeneous catalysts via tuning their surface properties. Despite the increasing application of organic modification technique in regulating the redox-acid catalysis of metal oxides, control of the acidity of metal oxide catalysts for enhanced reaction selectivity without sacrificing their redox activity remains a substantial challenge. Herein, we show the successful control of redox-acid catalysis of metal oxides with aprotic tertiary amine modifiers. Robust modification of manganese dioxide catalysts with N,N-dialkylcyclohexylamine selectively blocks the Lewis acid sites, with their redox activity mostly unaffected. This enables efficient synthesis of imines in high to excellent selectivity via aerobic oxidation of structurally diverse aryl amines.  相似文献   
969.
The purpose of this study was to develop mixed polymeric micelles with high drug loading capacity to improve the oral bioavailability of icaritin with Soluplus® and Poloxamer 407 using a creative acid-base shift (ABS) method, which exhibits the advantages of exclusion of organic solvents, high drug loading and ease of scaling-up. The feasibility of the ABS method was successfully demonstrated by studies of icaritin-loaded polymeric micelles (IPMs). The prepared IPMs were characterized to have a spherical shape with a size of 72.74 ± 0.51 nm, and 13.18% drug loading content. In vitro release tests confirmed the faster release of icaritin from IPMs compared to an oil suspension. Furthermore, bioavailability of icaritin in IPMs in beagle dogs displayed a 14.9-fold increase when compared with the oil suspension. Transcellular transport studies of IPMs across Caco-2 cell monolayers confirmed that the IPMs were endocytosed in their intact forms through macropinocytosis, clathrin-, and caveolae-mediated pathways. In conclusion, the results suggested that the mixed micelles of Soluplus® and Poloxamer 407 could be a feasible drug delivery system to enhance oral bioavailability of icaritin, and the ABS method might be a promising technology for the preparation of polymeric micelles to encapsulate poorly water-soluble weakly acidic and alkaline drugs.  相似文献   
970.
Rutin (R) and quercetin (Q) are two widespread dietary flavonoids. Previous studies regarding the plasma cholesterol-lowering activity of R and Q generated inconsistent results. The present study was therefore carried out to investigate the effects of R and Q on cholesterol metabolism in both HepG2 cells and hypercholesterolemia hamsters. Results from HepG2 cell experiments demonstrate that both R and Q decreased cholesterol at doses of 5 and 10 µM. R and Q up-regulated both the mRNA and protein expression of sterol regulatory element binding protein 2 (SREBP2), low-density lipoprotein receptor (LDLR), and liver X receptor alpha (LXRα). The immunofluorescence study revealed that R and Q increased the LDLR expression, while only Q improved LDL-C uptake in HepG2 cells. Results from hypercholesterolemia hamsters fed diets containing R (5.5 g/kg diet) and Q (2.5 g/kg diet) for 8 weeks demonstrate that both R and Q had no effect on plasma total cholesterol. In the liver, only Q reduced cholesterol significantly. The discrepancy between the in vitro and in vivo studies was probably due to a poor bioavailability of flavonoids in the intestine. It was therefore concluded that R and Q were effective in reducing cholesterol in HepG2 cells in vitro, whereas in vivo, the oral administration of the two flavonoids had little effect on plasma cholesterol in hamsters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号