首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   836篇
  免费   50篇
  国内免费   3篇
化学   612篇
晶体学   4篇
力学   4篇
数学   152篇
物理学   117篇
  2023年   8篇
  2022年   8篇
  2021年   19篇
  2020年   17篇
  2019年   27篇
  2018年   12篇
  2017年   9篇
  2016年   34篇
  2015年   20篇
  2014年   30篇
  2013年   37篇
  2012年   36篇
  2011年   41篇
  2010年   27篇
  2009年   31篇
  2008年   56篇
  2007年   37篇
  2006年   45篇
  2005年   52篇
  2004年   30篇
  2003年   28篇
  2002年   24篇
  2001年   11篇
  2000年   9篇
  1999年   7篇
  1998年   9篇
  1997年   5篇
  1996年   11篇
  1995年   5篇
  1994年   10篇
  1993年   8篇
  1991年   11篇
  1990年   7篇
  1989年   5篇
  1988年   10篇
  1986年   10篇
  1985年   11篇
  1984年   13篇
  1983年   11篇
  1982年   7篇
  1981年   9篇
  1980年   9篇
  1979年   13篇
  1978年   14篇
  1977年   6篇
  1976年   9篇
  1975年   6篇
  1974年   3篇
  1973年   5篇
  1971年   5篇
排序方式: 共有889条查询结果,搜索用时 140 毫秒
31.
By means of deuterium-labeling experiments, we have carried out a systematic ESI-MS study to determine the mechanism of ESI ionization of alkenyl and alkynyl group 6 Fischer carbene complexes. These compounds can be ionized under ESI conditions only in the presence of additives such as hydroquinone (HQ) or tetrathiafulvalene (TTF). Our results demonstrate that in the ESI source an anion-radical is formed after the initial HQ- or TTF-mediated electron transfer to the metallic carbene complex. For alkenyl carbene complexes, this species evolves by extrusion of a hydrogen radical to form an allenylchromium anion that is detected as the [M - H](-) ion in the mass spectrum. The preference for this mechanistic pathway could be rationalized by DFT calculations. In the case of alkynyl carbene complexes, experiments combining deuterated substrate, additive, and solvent demonstrate that the previously proposed allene-anion carbene complex is not formed. Instead, the H transfer from the ethoxy group in the anion radical, followed by extrusion of a hydrogen radical, leads to an allenyl anion that is detected in the ESI-MS as [M - H - CO](-).  相似文献   
32.
CH3OH temperature programmed surface reaction (TPSR) spectroscopy was employed to determine the chemical nature of active surface sites for bulk mixed metal oxide catalysts. The CH3OH-TPSR spectra peak temperature, Tp, for model supported metal oxides and bulk, pure metal oxides was found to be sensitive to the specific surface metal oxide as well as its oxidation state. The catalytic activity of the surface metal oxide sites was found to decrease upon reduction of these sites and the most active surface sites were the fully oxidized surface cations. The surface V5+ sites were found to be more active than the surface Mo6+ sites, which in turn were significantly more active than the surface Nb5+ and Te4+ sites. Furthermore, the reaction products formed also reflected the chemical nature of surface active sites. Surface redox sites are able to liberate oxygen and yield H2CO, while surface acidic sites are not able to liberate oxygen, contain either H+ or oxygen vacancies, and produce CH3OCH3. Surface V5+, Mo6+, and Te4+ sites behave as redox sites, and surface Nb5+ sites are Lewis acid sites. This experimental information was used to determine the chemical nature of the different surface cations in bulk Mo-V-Te-Nb-Ox mixed oxide catalysts (Mo(0.6)V(1.5)Ox, Mo(1.0)V(0.5)Te(0.16)Ox, Mo(1.0)V(0.3)Te(0.16)Nb(0.12)Ox). The bulk Mo(0.6)V(1.5)Ox and Mo(1.0)V(0.5)Te(0.16)Ox mixed oxide catalytic characteristics were dominated by the catalytic properties of the surface V5+ redox sites. The surface enrichment of these bulk mixed oxide by surface V5+ is related to its high mobility, V5+ possesses the lowest Tammann temperature among the different oxide cations, and the lower surface free energy associated with the surface termination of V=O bonds. The quaternary bulk Mo(1.0)V(0.3)Te(0.16)Nb(0.12)Ox mixed oxide possessed both surface redox and acidic sites. The surface redox sites reflect the characteristics of surface V5+ and the surface acidic sites reflect the properties normally associated with supported Mo6+. The major roles of Nb5+ and Te4+ appear to be that of ligand promoters for the more active surface V and Mo sites. These reactivity trends for CH3OH ODH parallel the reactivity trends of propane ODH because of their similar rate-determining step involving cleavage of a C-H bond. This novel CH3OH-TPSR spectroscopic method is a universal method that has also been successfully applied to other bulk mixed metal oxide systems to determine the chemical nature of the active surface sites.  相似文献   
33.
The adsorption of two different molecular weights of polyvinylpyrrolidone (PVP) (M(w)=44,000 and M(w)=360,000 g mol(-1)) from water on kaolinite saturated with sodium chloride has been studied. The adsorption of PVP increases slowly as temperature increases. The adsorption of PVP on the kaolinite was studied by considering Fourier transform infrared (FTIR) spectra, X-ray diffraction patterns, and dielectric constants. During the adsorption process, PVP interacts with saturating sodium cations and possibly forces some of them onto the edges of the kaolinite; thus, the dielectric constant of saturated kaolinite is reduced after PVP adsorption. Copyright 2001 Academic Press.  相似文献   
34.
The entering and leaving processes of Huperzine A (HupA) binding with the long active-site gorge of Torpedo californica acetylcholinesterase (TcAChE) have been investigated by using steered molecular dynamics simulations. The analysis of the force required along the pathway shows that it is easier for HupA to bind to the active site of AChE than to disassociate from it, which for the first time interprets at the atomic level the previous experimental result that unbinding process of HupA is much slower than its binding process to AChE. The direct hydrogen bonds, water bridges, and hydrophobic interactions were analyzed during two steered molecular dynamics (SMD) simulations. Break of the direct hydrogen bond needs a great pulling force. The steric hindrance of bottleneck might be the most important factor to produce the maximal rupture force for HupA to leave the binding site but it has a little effect on the binding process of HupA with AChE. Residue Asp72 forms a lot of water bridges with HupA leaving and entering the AChE binding gorge, acting as a clamp to take out HupA from or put HupA into the active site. The flip of the peptide bond between Gly117 and Gly118 has been detected during both the conventional MD and SMD simulations. The simulation results indicate that this flip phenomenon could be an intrinsic property of AChE and the Gly117-Gly118 peptide bond in both HupA bound and unbound AChE structures tends to adopt the native enzyme structure. At last, in a vacuum the rupture force is increased up to 1500 pN while in water solution the greatest rupture force is about 800 pN, which means water molecules in the binding gorge act as lubricant to facilitate HupA entering or leaving the binding gorge.  相似文献   
35.
36.
The visible absorption spectra have been measured for the reaction products formed by aldehydes and ketones with p-nitrobenzenediazonium fluoborate in a phosphoric acid-2-methoxyethanol solvent medium. The absorption maxima for the reaction products of higher molecular weight aldehydes and ketones are much more intense than those formed by formaldehyde, acetaldehyde and acetone. This intensity effect has been used to analyze for propionaldehyde in mixtures also containing formaldehyde, acetaldehyde or acetone. The nature of the reaction products are considered.  相似文献   
37.
We report the orientational behavior of nematic phases of 4-cyano-4'-pentylbiphenyl (5CB) on cationic, anionic, and nonionic surfaces before and after contact of these surfaces with solutions containing the negatively charged vesicular stomatitis virus (VSV). The surfaces were prepared on evaporated films of gold by either adsorption of poly-L-lysine (cationic) or formation of self-assembled monolayers (SAMs) from HS(CH2)2SO3- (anionic) or HS(CH2)11(OCH2CH2)4OH (nonionic). Prior to treatment with virus, we measured the initial orientation of 5CB (delta epsilon = epsilon(parallel) - epsilon(perpendicular) > 0) to be parallel to the cationic surfaces (planar anchoring) but perpendicular (homeotropic) after equilibration for 5 days. A similar transition from planar to homeotropic orientation of 5CB was observed on the anionic surfaces. Only planar orientations of 5CB were observed on the nonionic surfaces. Because N-(4-methoxybenzylidene)-4-butylaniline (MBBA, delta epsilon = epsilon(parallel) - epsilon(perpendicular) < 0) exhibited planar alignment on all surfaces, the time-dependent alignment of 5CB on the ionic surfaces is consistent with a dipolar coupling between the 5CB and electrical double layers formed at the ionic interfaces. Treatment ofpoly-L-lysine-coated gold films (cationic) with purified solutions of VSV containing 10(8)-10(10) plaque-forming units per milliliter (pfu/mL) led to the homeotropic alignment of 5CB immediately after contact of 5CB with the surface. In contrast, treatment of anionic surfaces and nonionic surfaces with solutions of VSV containing approximately 10(10) pfu/mL did not cause immediate homeotropic alignment of 5CB. These results and others suggest that homeotropic alignment of 5CB on cationic surfaces treated with VSV of titer > or = 10(8) pfu/mL reflects the presence of virus electrostatically bound to these surfaces.  相似文献   
38.
The controlled decomposition of an Ru(0) organometallic precursor dispersed in 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMI.PF(6)), tetrafluoroborate (BMI.BF(4)) or trifluoromethane sulfonate (BMI.CF(3)SO(3)) ionic liquids with H(2) represents a simple and efficient method for the generation of Ru(0) nanoparticles. TEM analysis of these nanoparticles shows the formation of superstructures with diameters of approximately 57 nm that contain dispersed Ru(0) nanoparticles with diameters of 2.6+/-0.4 nm. These nanoparticles dispersed in the ionic liquids are efficient multiphase catalysts for the hydrogenation of alkenes and benzene under mild reaction conditions (4 atm, 75 degrees C). The ternary diagram (benzene/cyclohexene/BMI.PF(6)) indicated a maximum of 1 % cyclohexene concentration in BMI.PF(6), which is attained with 4 % benzene in the ionic phase. This solubility difference in the ionic liquid can be used for the extraction of cyclohexene during benzene hydrogenation by Ru catalysts suspended in BMI.PF(6). Selectivities of up to 39 % in cyclohexene can be attained at very low benzene conversion. Although the maximum yield of 2 % in cyclohexene is too low for technical applications, it represents a rare example of partial hydrogenation of benzene by soluble transition-metal nanoparticles.  相似文献   
39.
The reaction of Re2(CO)8[mu-eta2-C(H)=C(H)Bu(n)](mu-H) with Ph3SnH at 68 degrees C yielded the new compound Re2(CO)8(mu-SnPh2)2 (10) which contains two SnPh2 ligands bridging two Re(CO)(4) groups, joined by an unusually long Re-Re bond. Fenske-Hall molecular orbital calculations indicate that the bonding in the Re2Sn2 cluster is dominated by strong Re-Sn interactions and that the Re-Re interactions are weak. The 119Sn M?ssbauer spectrum of 10 exhibits a doublet with an isomer shift (IS) of 1.674(12) mm s(-1) and a quadrupole splitting (QS) of 2.080(12) mm s(-1) at 90 K,characteristic of Sn(IV) in a SnA2B2 environment. The IS is temperature dependent, -1.99(14) x 10(-4) mm s(-1) K(-1); the QS is temperature independent. The temperature-dependent properties are consistent with the known Gol'danskii-Kariagin effect. The germanium compound Re2(CO)8(mu-GePh2)2 (11) was obtained from the reaction of Re2(CO)8[mu-eta2-C(H)=C(H)Bu(n)](mu-H) with Ph3GeH. Compound 11 has a structure similar to that of 10. The reaction of 10 with Pd(PBu(t)3)2 at 25 degrees C yielded the bis-Pd(PBu(t)3) adduct, Re2(CO)8(mu-SnPh2)2[Pd(PBu(t)3)]2 (12); it has two Pd(PBu(t)3) groups bridging two of the four Re-Sn bonds in 10. Fenske-Hall molecular orbital calculations show that the Pd(PBu(t)3) groups form three-center two-electron bonds with the neighboring rhenium and tin atoms. The mono- and bis-Pt(PBu(t)3) adducts, Re2(CO)8(mu-SnPh2(2)[Pt(PBu(t)3)] (13) and Re2(CO)8(mu-SnPh2)2[Pt(PBu(t)3)]2 (14), were formed when 10 was treated with Pt(PBu(t)3)2. A mono adduct of 11, Re2(CO)8(mu-GePh2)2[Pt(PBu(t)3)] (15), was obtained similarly from the reaction of 11 with Pt(PBu(t)3)2.  相似文献   
40.
In this paper we present the results of an experimental study of intermolecular electronic energy transfer (EET) from the short-lived Second excited singlet state of rhodamine 6G (R6G) to the ground state of 2,5-bis [5′-tert-butyl-2-benzoxazolyl] thiophene (BBOT). The S2 state of the donor was excited by sequential, time-delayed, two-photon excitation (STDTPE) utilizing the second harmonic and the first harmonic of a mode-locked Nd3+: glass laser, while the EET process was interrogated by monitoring the enhancement of the S1 → S0 fluorescence of BBOT. The enhancement of the fluorescence intensity of BBOT was found to be linear in the energies of the two exciting pulses, and linear in the concentration of the energy acceptor (over the BBOT concentration range of (0.3–7) × 10?5 M), which is in accord with the predictions of the Forster—Dexter mechanism for resonant EET from an ultrashort-lived donor state at low acceptor concentrations. Quantitative measurements of the S2 → S0 fluorescence yield in R6G solution directly excited by STDTPE and of the S1 → S0 fluorescence of BBOT from R6G + BBOT solutions resulting from EET led to the values of YD(S2 → S0) = (2.1 ± 0.5) × 10?6 for the emission quantum yield of the S2 state of R6G and τrD(S2) ≈ 3 × 10?14 s for the lifetime of the metastable S2 state of this molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号