首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic energy transfer from the S2 state of rhodamine 6G
Authors:Israel Kaplan  Joshua Jortner
Institution:Department of Chemistry, Tel-Aviv University, Tel Aviv, Israel
Abstract:In this paper we present the results of an experimental study of intermolecular electronic energy transfer (EET) from the short-lived Second excited singlet state of rhodamine 6G (R6G) to the ground state of 2,5-bis 5′-tert-butyl-2-benzoxazolyl] thiophene (BBOT). The S2 state of the donor was excited by sequential, time-delayed, two-photon excitation (STDTPE) utilizing the second harmonic and the first harmonic of a mode-locked Nd3+: glass laser, while the EET process was interrogated by monitoring the enhancement of the S1 → S0 fluorescence of BBOT. The enhancement of the fluorescence intensity of BBOT was found to be linear in the energies of the two exciting pulses, and linear in the concentration of the energy acceptor (over the BBOT concentration range of (0.3–7) × 10?5 M), which is in accord with the predictions of the Forster—Dexter mechanism for resonant EET from an ultrashort-lived donor state at low acceptor concentrations. Quantitative measurements of the S2 → S0 fluorescence yield in R6G solution directly excited by STDTPE and of the S1 → S0 fluorescence of BBOT from R6G + BBOT solutions resulting from EET led to the values of YD(S2 → S0) = (2.1 ± 0.5) × 10?6 for the emission quantum yield of the S2 state of R6G and τrD(S2) ≈ 3 × 10?14 s for the lifetime of the metastable S2 state of this molecule.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号