首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1543篇
  免费   40篇
  国内免费   1篇
化学   1022篇
晶体学   8篇
力学   51篇
数学   137篇
物理学   366篇
  2021年   13篇
  2020年   21篇
  2016年   20篇
  2015年   30篇
  2014年   26篇
  2013年   50篇
  2012年   54篇
  2011年   68篇
  2010年   34篇
  2009年   34篇
  2008年   55篇
  2007年   65篇
  2006年   56篇
  2005年   32篇
  2004年   23篇
  2003年   30篇
  2002年   38篇
  2001年   23篇
  2000年   27篇
  1999年   23篇
  1998年   27篇
  1997年   25篇
  1996年   27篇
  1995年   40篇
  1994年   30篇
  1993年   40篇
  1992年   24篇
  1991年   31篇
  1990年   18篇
  1989年   22篇
  1988年   33篇
  1987年   32篇
  1986年   24篇
  1985年   30篇
  1984年   36篇
  1983年   21篇
  1982年   21篇
  1981年   26篇
  1980年   10篇
  1979年   24篇
  1978年   24篇
  1977年   16篇
  1976年   21篇
  1975年   21篇
  1974年   17篇
  1973年   26篇
  1972年   16篇
  1970年   10篇
  1968年   9篇
  1966年   9篇
排序方式: 共有1584条查询结果,搜索用时 15 毫秒
91.
The continuous emergence of antimicrobial resistance is causing a threat to patients infected by multidrug-resistant pathogens. In particular, the clinical use of aminoglycoside antibiotics, broad-spectrum antibacterials of last resort, is limited due to rising bacterial resistance. One of the major resistance mechanisms in Gram-positive and Gram-negative bacteria is phosphorylation of these amino sugars at the 3’-position by O-phosphotransferases [APH(3’)s]. Structural alteration of these antibiotics at the 3’-position would be an obvious strategy to tackle this resistance mechanism. However, the access to such derivatives requires cumbersome multi-step synthesis, which is not appealing for pharma industry in this low-return-on-investment market. To overcome this obstacle and combat bacterial resistance mediated by APH(3’)s, we introduce a novel regioselective modification of aminoglycosides in the 3’-position via palladium-catalyzed oxidation. To underline the effectiveness of our method for structural modification of aminoglycosides, we have developed two novel antibiotic candidates overcoming APH(3’)s-mediated resistance employing only four synthetic steps.  相似文献   
92.
We numerically study light propagation through a specially designed nonlinear nanoscale metal-dielectric multilayer structure with a linear effective dielectric constant just below zero. The calculated dependence of the output intensity on the input intensity shows a steplike behavior. It rests upon an intensity-dependent change of the effective dielectric constant from negative (low-transmission state) to positive (high-transmission state) values, corresponding to a transition of the optical properties from metalliclike to dielectriclike. The study of the transient behavior of the structure demonstrates a switching time of around 1 ps.  相似文献   
93.
The airborne transport of particles on a granular surface by the saltation mechanism is studied through numerical simulation of particles dragged by turbulent air flow. We calculate the saturated flux qs and show that its dependence on the wind strength u* is consistent with several empirical relations obtained from experimental measurements. We propose and explain a new relation for fluxes close to the threshold velocity ut, namely, qs=a(u*-ut)α with α≈2. We also obtain the distortion of the velocity profile of the wind due to the drag of the particles and find a novel dynamical scaling relation. We also obtain a new expression for the dependence of the height of the saltation layer as function of the strength of the wind.  相似文献   
94.
Parallel alignment of dipolar electron‐donor–π‐bridge‐electron‐acceptor entities can strongly enhance their nonlinear optical properties. This favorable arrangement can be in principle achieved by linking these units covalently or through metal coordination. Four dipolar single‐strand chromophores decorated with a 5‐electron‐donor–5′‐electron‐acceptor‐modified 2,2′‐bipyridine functionality were synthesized. For two of these chromophores triple‐stranded dendritic structures were successfully formed. All of the compounds were characterized with respect to their linear and nonlinear optical properties. For the aldehyde derivatives an enhancement of the first hyperpolarizability of 4.5 rather than 3 was obtained when going from single to triple strands. Theoretical calculations with density functional theory suggest that interstrand transitions contribute to the optical properties of the dendritic structures.  相似文献   
95.
Gas‐phase oxidation routes of biogenic emissions, mainly isoprene and monoterpenes, in the atmosphere are still the subject of intensive research with special attention being paid to the formation of aerosol constituents. This laboratory study shows that the most abundant monoterpenes (limonene and α‐pinene) form highly oxidized RO2 radicals with up to 12 O atoms, along with related closed‐shell products, within a few seconds after the initial attack of ozone or OH radicals. The overall process, an intramolecular ROO→QOOH reaction and subsequent O2 addition generating a next R′OO radical, is similar to the well‐known autoxidation processes in the liquid phase (QOOH stands for a hydroperoxyalkyl radical). Field measurements show the relevance of this process to atmospheric chemistry. Thus, the well‐known reaction principle of autoxidation is also applicable to the atmospheric gas‐phase oxidation of hydrocarbons leading to extremely low‐volatility products which contribute to organic aerosol mass and hence influence the aerosol–cloud–climate system.  相似文献   
96.
In this work, we report on the reduction of tetracyanoquinodimethane (TCNQ) with dicationic complexes of guanidinyl‐functionalized aromatic (GFA) electron donors. In contrast to reduction with free GFAs, milder reduction conditions were achieved, and this led to semiconducting materials with extended TCNQ π stacking. The charge on the TCNQ units was estimated from the structural data obtained by single‐crystal X‐ray diffraction analysis and from IR spectroscopic data. The electrical conductivity was studied and the activation energy of the semiconducting materials was estimated from the temperature dependence of the conductivity.  相似文献   
97.
Cystobactamids belong to the group of arene-based oligoamides that effectively inhibit bacterial type IIa topoisomerases. Cystobactamid 861-2 is the most active member of these antibiotics. Most amide bonds present in the cystobactamids link benzoic acids with anilines and it was found that some of these amide bonds undergo chemical and enzymatic hydrolysis, especially the one linking ring C with ring D. This work reports on the chemical synthesis and biological evaluation of thirteen new cystobactamids that still contain the methoxyaspartate hinge. However, we exchanged selected amide bonds either by the urea or the triazole groups and modified ring A in the latter case. While hydrolytic stability could be improved with these structural substitutes, the high antibacterial potency of cystobactamid 861-2 could only be preserved in selected cases. This includes derivatives, in which the urea group is positioned between rings A and B and where the triazole is found between rings C and D.  相似文献   
98.
Single‐walled carbon nanotubes (SWCNTs) are a 1D nanomaterial that shows fluorescence in the near‐infrared (NIR, >800 nm). In the past, covalent chemistry was less explored to functionalize SWCNTs as it impairs NIR emission. However, certain sp3 defects (quantum defects) in the carbon lattice have emerged that preserve NIR fluorescence and even introduce a new, red‐shifted emission peak. Here, we report on quantum defects, introduced using light‐driven diazonium chemistry, that serve as anchor points for peptides and proteins. We show that maleimide anchors allow conjugation of cysteine‐containing proteins such as a GFP‐binding nanobody. In addition, an Fmoc‐protected phenylalanine defect serves as a starting point for conjugation of visible fluorophores to create multicolor SWCNTs and in situ peptide synthesis directly on the nanotube. Therefore, these quantum defects are a versatile platform to tailor both the nanotube's photophysical properties as well as their surface chemistry.  相似文献   
99.
100.
Amphiphilic polystyrene‐ and polymethacrylate‐based β‐acyloxy ketones were investigated as potential delivery systems for the controlled release of damascones by retro‐1,4‐addition in applications of functional perfumery. A series of random copolymers being composed of the hydrophobic damascone‐release unit and a second hydrophilic monomer were obtained by radical polymerization in organic solution by using 2,2′‐azobis[2‐methylpropanenitrile] (AIBN) as the radical source (Schemes 2 and 3). A first evaluation of the polymer conjugates in acidic or alkaline buffered aqueous solution, and in the presence of a surfactant, showed that polymethacrylates and polystyrenes having a carboxylic acid function as hydrophilic group are particularly interesting for the targeted applications (Table 2). The release of δ‐damascone ( 1 ) from polymers with poly(methacrylic acid) and poly(vinylbenzoic acid) comonomers in different stoichiometric ratios was thus followed over several days at pH 4, 7, and 9 by comparison of fluorescence probing, solvent extraction, and particle‐size measurements (Tables 3 and 4). In acidic media, the polymers were found to be stable, and almost no δ‐damascone ( 1 ) was released. In neutral or alkaline solution, where the carboxylic acid functions are deprotonated, the concentration of 1 increased over time. In the case of the polymethacrylates, the fluorescence probing experiments showed an increasing hydrophilicity of the polymer backbone with increasing fragrance release, whereas in the case of the polystyrene support, the hydrophilicity of the environment remained constant. These results suggest that the nature of the polymer backbone may have a stronger influence on the fragrance release than the ratio of hydrophilic and hydrophobic monomers in the polymer chain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号