首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
化学   35篇
力学   1篇
数学   2篇
物理学   16篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   6篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   7篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1993年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
11.
A density functional theory calculation is used to investigate the atomic oxygen (O) stability over platinum (Pt) and Pt‐based alloy surfaces. Here, the stability is connected with the preferential adsorption sites for O chemisorptions and the adsorption energy. Thus, the interaction mechanism between atomic O and metal surfaces is studied by using charge transfer analysis. In this present paper, atomic structure and binding energy of oxygen adsorption on the Pt(111) are in a very good agreement with experiment and previous density functional theory calculations. Furthermore, we obtained that the addition of ruthenium (Ru) and molybdenum (Mo) on the pure Pt surface enhances the adsorption energy. Our charge transfer analysis shows that the largest charge transfer contributing to the metal‐O bonding formation is observed in the case of O/PtRuMo surface followed by O/PtRu surface. This is in consistency with metal d‐orbital characteristic, where Mo has much more empty d‐orbital than Ru in correspondence to accept electrons from atomic oxygen. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
12.
Combined on-line transmission FTIR spectroscopy and band-target entropy minimization (BTEM) analysis were employed in order to monitor and analyze the kinetics of the alkaline hydrolysis reaction of diethyl phthalate (DEP) in aqueous-ethanol solvent mixture. This reaction is irreversible and involves two consecutive steps with the formation of the observable mono-ion intermediate species. The pure component mid-FTIR spectra of the reactive species involved in this reaction, namely DEP, mono-ion intermediate and di-ion product were successfully reconstructed using BTEM. Their corresponding concentrations were also calculated and subsequently employed to derive the kinetic rate parameters. The effect of temperature and the solvent mixture compositions on these two consecutive reaction steps were also discussed. The temperature variation study showed that both reaction rate coefficients increased with temperature. Both rate coefficients were also affected by the solvent mixture compositions and reached minimum values at certain water-ethanol solvent composition (circa 60% (v/v)). This study shows the utility of combined on-line transmission FTIR spectroscopy and chemometric techniques for the present, rather complex, consecutive organic reaction. Moreover, the present type of approach could facilitate better understanding of a wide variety of organic reactions that are performed in aqueous and mixed aqueous-organic solvents.  相似文献   
13.
In order to solve storage problem in real-time optical metrology, storing digital specklegrams by using a lossy-joint photographic experts group image compression is studied. A spatial distribution of a correlation signal calculated from the compressed specklegrams is used as a criterion for evaluating quality of information content of the specklegrams. The results show that high quality of displacement information is retrievable from the compressed specklegrams.  相似文献   
14.
The decision limit (CCα), capability of detection (CCβ) and quantification limit (QL) are importance performance characteristics in method validation. The TLC-Scanner 3 from Camag provides the possibility to choose the slit dimension of light to determine the peak chromatogram of a substance. The influence of the slit dimension for determination of CCα, CCβ and QL of paracetamol has been carried out. Paracetamol was spotted onto plates of AL-TLC Si G 60 F254 by linomat 4 in the range of 50–400 ng/spot and 10–400 ng/band, then on twin chambers eluted with TAEA (toluene:acetone-ethanol:conc.ammonia, 45 + 45 + 7 + 3 v/v) for 45 mm. Eluted spots were scanned in different slit dimensions at 248 nm. The CCα, CCβ and QL of paracetamol were estimated through the linear regression (LRM) and signal-to-noise (S/N) methods. Slit lengths between 50 and 133 % of the band width of the spots, and with the noise factor of the slit under 2.6, produced good precision measurements of TLC-densitometry between plates, while slit lengths between 50 and 83 % of the band width of the spots introduced a higher sensitivity response of the detector. The estimated CCα, CCβ and QL were determined by how the data were collected, the analytical optical setting, and the usage method for the estimation of both validation parameters.  相似文献   
15.
Calorimetry and signal processing : Vibrational spectroscopies, heat‐flow microcalorimetry, and multivariate analysis are combined to decouple the reaction enthalpies of parallel reactions (see picture). This methodology allows the evaluation of reaction enthalpy from complex systems without recourse to conventional kinetic modeling.

  相似文献   

16.
17.
Structural complexity of biological drug products presents an analytical challenge in terms of early detection of aggregation and/or degradation. In the present study, Raman and Raman optical activity (ROA) were evaluated for their sensitivity to detect heat‐induced molecular instability in an Immunoglobulin G4 subclass therapeutic monoclonal antibody present in its formulation matrix. The therapeutic antibody was subjected to heat stress at 50 °C and was analyzed at various time points up to 1 month. The current results suggest that Raman and ROA are sensitive to early‐stage detection of heat‐induced instability of the antibody, in which significant changes could be observed at 1 week of stress. ROA could provide early detection of the subtle differences at the tertiary structure level in a heat‐stressed monoclonal antibody and Raman/ROA spectra could provide early detection in secondary structural changes as well. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
18.
Shape-memory effect (SME) is the ability of a material to change its dimension in a predefined way in response to an external stimulus. Polymers that exhibit SME are an important class of materials in medicine, especially for minimally invasive deployment of devices. However, the rate of translation of the concept to approved products is extremely low, with mostly nitinolbased devices being approved. In this review, the general aspects of the different types of stimuli that can be used to activate SME are reviewed and sterilization issues of shape-memory polymer (SMP)-based medical devices are addressed. In addition, the general usefulness as well as the limitations of the shape-memory effect for biomedical applications are described.  相似文献   
19.
Widjaja E  Lim GH  An A 《The Analyst》2008,133(4):493-498
This paper illustrates a novel method for human gender classification by measuring the Raman spectrum of fingernail clippings. As Raman spectroscopy reveals the characteristics of vibrational frequencies of the fingernails, it provides unique chemical fingerprints that can be used to describe the molecular structure differences of fingernail between males and females. As the differences of Raman spectra of human fingernails are very subtle, they are enhanced by using a pattern recognition method. In the present study, a combination algorithm of principal component analysis (PCA) and support vector machines (SVM) was implemented to perform the data classification. This combined algorithm provides a classification accuracy of up to 90%. The success of this present method may be used as an alternative rapid tool to identify human gender in forensic applications.  相似文献   
20.
Raman mapping measurements were performed on the glazed and unglazed surfaces of shards excavated from Yuan, Ming, and Qing dynasty strata. A number of areas on each surface were chosen. Circa 21 × 21 pixels were measured for each area using both 514 and 785‐nm laser as the Raman excitation. Data were collected from 100–3600 cm−1. Many sets of spectra exhibited very intense fluorescence. In spite of the intense fluorescence, the resulting sets of spectra were collated and analyzed together using the band‐target entropy minimization (BTEM) algorithm. Pure component spectral estimates of many of the major components were achieved, without the use of any a priori information such as spectral libraries. These include α‐silica quartz, carbon, anatase, cobalt oxides, hematite, glassy silicate, and lanthanide complexes. In addition, two further unidentified pure component spectra A and B were recovered as well as an interference pattern due to the microscopic texture of the shards (associated with small particle/thin layer domains). The carbon was primarily present in elemental form, i.e. mixture of amorphous and graphitic (unordered and ordered domains); however there is an evidence of some partial oxidation, i.e. formation of carboxylates. The interference patterns and the lanthanide complexes were only observed when using the longer wavelength red laser. The cobalt oxides and the anatase were only observed when using the green laser. In summary, the combination of Raman microscopy and BTEM has allowed the enumeration of many of the underlying spectral patterns present and hence unambiguous identification of the major individual components present in the archaeological samples. This approach would appear applicable to other classes of archaeological materials as well. Limitations and extensions of the present approach are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号