首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
化学   5篇
力学   1篇
数学   1篇
物理学   18篇
  2016年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1996年   2篇
  1993年   3篇
  1980年   1篇
  1974年   1篇
排序方式: 共有25条查询结果,搜索用时 578 毫秒
21.
Time of flight and energy of fission fragments were measured using pulsed beam. Fission fragment mass and energy integrated angular distributions were extracted. Fission fragment anisotropy was explained in the framework of saddle point model.  相似文献   
22.
One-dimensional (1D) dipolar quantum gases are characterized by a very special condition where super-strong correlations occur to significantly affect the static and dynamical low-energy behavior. This behavior is accurately described by the Luttinger Liquid theory with parameter K < 1. Dipolar Bose gases are routinely studied in laboratory with Chromium atoms. On the other hand, 1D realizations with molecular quantum gases can be at reach of current experimental expertises, allowing to explore such extreme quantum degenerate conditions which are the bottom line for designing technological devices. Aim of the present contribution is to focus on the possible probes expected to signal the reach of Luttinger-Liquid behavior in 1D dipolar gases.  相似文献   
23.
We predict a direct and observable signature of the superfluid phase in a quantum Fermi gas, in a temperature regime already accessible in current experiments. We apply the theory of resonance superfluidity to a gas confined in a harmonic potential and demonstrate that a significant increase in density will be observed in the vicinity of the trap center.  相似文献   
24.
We consider the superfluid phase transition that arises when a Feshbach resonance pairing occurs in a dilute Fermi gas. We apply our theory to consider a specific resonance in potassium ((40)K), and find that for achievable experimental conditions, the transition to a superfluid phase is possible at the high critical temperature of about 0.5T(F). Observation of superfluidity in this regime would provide the opportunity to experimentally study the crossover from the superfluid phase of weakly coupled fermions to the Bose-Einstein condensation of strongly bound composite bosons.  相似文献   
25.
We study the dispersion relation of the excitations of a dilute Bose-Einstein condensate confined in a periodic optical potential and its Bloch oscillations in an accelerated frame. The problem is reduced to one-dimensionality through a renormalization of the s-wave scattering length and the solution of the Bogolubov-de Gennes equations is formulated in terms of the appropriate Wannier functions. Some exact properties of a periodic one-dimensional condensate are easily demonstrated: (i) the lowest band at positive energy refers to phase modulations of the condensate and has a linear dispersion relation near the Brillouin zone centre; (ii) the higher bands arise from the superposition of localized excitations with definite phase relationships; and (iii) the wavenumber-dependent current under a constant force in the semiclassical transport regime vanishes at the zone boundaries. Early results by Slater [Phys. Rev. 87, 807 (1952)] on a soluble problem in electron energy bands are used to specify the conditions under which the Wannier functions may be approximated by on-site tight-binding orbitals of harmonic-oscillator form. In this approximation the connections between the low-lying excitations in a lattice and those in a harmonic well are easily visualized. Analytic results are obtained in the tight-binding scheme and are illustrated with simple numerical calculations for the dispersion relation and semiclassical transport in the lowest energy band, at values of the system parameters which are relevant to experiment. Received 3 December 1999 and Received in final form 22 March 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号