首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We discuss the BCS-BEC crossover in a degenerate Fermi gas of two hyperfine states interacting close to a Feshbach resonance. We show that, by including fluctuation contributions to the free energy similar to that considered by Nozières and Schmitt-Rink, the character of the superfluid phase transition continuously changes from the BCS-type to the BEC-type, as the threshold of the quasimolecular band is lowered. In the BEC regime, the superfluid phase transition is interpreted in terms of molecules associated with both the Feshbach resonance and Cooper pairing.  相似文献   

2.
We study a superfluid on a lattice close to a transition into a supersolid phase and show that a uniform superflow in the homogeneous superfluid can drive the roton gap to zero. This leads to supersolid order around the vortex core in the superfluid, with the size of the modulated pattern around the core being related to the bulk superfluid density and roton gap. We also study the electronic tunneling density of states for a uniform superconductor near a phase transition into a supersolid phase. Implications are considered for strongly correlated superconductors.  相似文献   

3.
We study a one-dimensional gas of fermionic atoms interacting via an s-wave molecular Feshbach resonance. At low energies the system is characterized by two Josephson-coupled Luttinger liquids, corresponding to paired atomic and molecular superfluids. We show that, in contrast to higher dimensions, the system exhibits a quantum phase transition from a phase in which the two superfluids are locked together to one in which, at low energies, quantum fluctuations suppress the Feshbach resonance (Josephson) coupling, effectively decoupling the molecular and atomic superfluids. Experimental signatures of this quantum transition include the appearance of an out-of-phase gapless mode (in addition to the standard gapless in-phase mode) in the spectrum of the decoupled superfluid phase and a discontinuous change in the molecular momentum distribution function.  相似文献   

4.
We study a quantum phase transition between fermion superfluid (SF) and band insulator (BI) of fermions in optical lattices. The destruction of the band insulator is driven by the energy gain in promoting fermions from valance band to various conducting bands to form Cooper pairs. We show that the transition must take place in lattice height Vo/ER between 2.23 and 4.14. The latter is the prediction of mean-field theory while the former is the value for opening a band gap. As one moves across resonance to the molecule side, the SF-BI transition evolves into the SF-Mott-insulator transition of bosonic molecules. We shall also present the global phase diagram for SF-insulator transition for the BCS-BEC family.  相似文献   

5.
We study bosonic atoms near a Feshbach resonance and predict that, in addition to standard normal and atomic superfluid phases, this system generically exhibits a distinct phase of matter: a molecular superfluid, where molecules are superfluid while atoms are not. We explore zero- and finite-temperature properties of the molecular superfluid (a bosonic, strong-coupling analog of a BCS superconductor), and study quantum and classical phase transitions between the normal, molecular superfluid, and atomic superfluid states.  相似文献   

6.
熊芳  冯晓强  谭磊 《物理学报》2016,65(4):44205-044205
基于准玻色方法, 利用平均场理论解析求解了环境作用下双光子过程耦合腔阵列体系的哈密顿量, 得到了体系序参量的解析表达式, 并讨论了耗散对体系超流-Mott绝缘相变的影响. 研究结果表明: 双光子共振情况下系统重铸相干的腔间耦合率临界值为(ZJ/β)= (ZJ/β)c'≈ 0.34;双光子相互作用过程比单光子过程具有更大的耗散率, 系统维持长程相干状态的时间更短, 而实现重铸相干的腔间耦合率的临界值更大.  相似文献   

7.
The atomic Bose gas is studied across a Feshbach resonance, mapping out its phase diagram, and computing its thermodynamics and excitation spectra. It is shown that such a degenerate gas admits two distinct atomic and molecular superfluid phases, with the latter distinguished by the absence of atomic off-diagonal long-range order, gapped atomic excitations, and deconfined atomic π-vortices. The properties of the molecular superfluid are explored, and it is shown that across a Feshbach resonance it undergoes a quantum Ising transition to the atomic superfluid, where both atoms and molecules are condensed. In addition to its distinct thermodynamic signatures and deconfined half-vortices, in a trap a molecular superfluid should be identifiable by the absence of an atomic condensate peak and the presence of a molecular one.  相似文献   

8.
We consider disorder effect on electron-hole pairing in the system of two graphene monolayers separated by dielectric barrier. The influence of charged impurities on temperature of phase transition is studied. In spite of large values of mobility of charge carriers in graphene disorder can considerably reduce temperature of electron-hole condensation in weak-coupling regime. The quantum hydrodynamics of the system is considered and phase stiffness of electron-hole condensate and temperature of Berezinskii-Kosterlitz-Thouless transition to the superfluid state are calculated.  相似文献   

9.
We present phase diagrams for population-imbalanced, trapped Fermi superfluids near unitarity. In addition to providing quantitative values for the superfluid transition temperature, the pairing onset temperature, and the transition line (separating the Sarma and phase separation regimes), we study experimental signatures of these transitions based on density profiles and density differences at the center. Predictions on the BCS side of resonance show unexpected behavior, which should be searched for experimentally.  相似文献   

10.
We study a single-species polarized Fermi gas tuned across a narrow p-wave Feshbach resonance. We show that in the course of a Bose-Einstein condensation (BEC)-BCS crossover, the system can undergo a magnetic-field-tuned quantum phase transition from a px-wave to a px+ipy-wave superfluid. The latter state, that spontaneously breaks time-reversal symmetry, furthermore undergoes a topological px+ipy to px+ipy transition at zero chemical potential mu. In two dimensions, for mu > 0 it is characterized by a Pfaffian ground state exhibiting topological order and non-Abelian excitations familiar from fractional quantum Hall systems.  相似文献   

11.
Starting from the assumption that the normal solid to supersolid (NS-SS) phase transition is continuous, we develop a phenomenological Landau theory of the transition in which superfluidity is coupled to the elasticity of the crystalline lattice. We find that the elasticity does not affect the universal properties of the superfluid transition, so that in an unstressed crystal the well-known anomaly in the heat capacity of the superfluid transition should also appear at the NS-SS transition. We also find that the onset of supersolidity leads to anomalies in the elastic moduli and thermal expansion coefficients near the transition and, conversely, that inhomogeneous lattice strains can induce local variations of the superfluid transition temperature, leading to a broadened transition.  相似文献   

12.
We consider excitons in a two-dimensional periodic potential and study the linear response of the excitonic superfluid to an electromagnetic wave at low and high densities. It turns out that the static structure factor for small wavevectors is very sensitive to a change of density and temperature. It is a consequence of the fact that thermal fluctuations play a crucial role at small wavevectors, since exchanging the order of the two limits, zero temperature and vanishing wavevector, leads to different results for the structure factor. This effect could be used for high accuracy measurements in the superfluid exciton phase, which might be realized by a gated electron-hole gas, for instance, in coupled quantum wells or double layer materials. The transition of the exciton system from the superfluid state to a non-superfluid state and its manifestation by light scattering are discussed.  相似文献   

13.
We examine the equilibrium properties of lattice bosons with attractive on-site interactions in the presence of a three-body hard-core constraint that stabilizes the system against collapse and gives rise to a dimer superfluid phase. Employing quantum Monte Carlo simulations, the ground state phase diagram of this system on the square lattice is analyzed. In particular, we study the quantum phase transition between the atomic and dimer superfluid regime and analyze the nature of the superfluid-insulator transitions. Evidence is provided for the existence of a tricritical point along the saturation transition line, where the transition changes from being first order to a continuous transition of the dilute Bose gas of holes. The Berzinskii-Kosterlitz-Thouless transition from the dimer superfluid to the normal fluid is found to be consistent with an anomalous stiffness jump, as expected from the unbinding of half-vortices.  相似文献   

14.
We report the first measurements of the A-B phase transition of superfluid 3He confined within 98% silica aerogel in high magnetic fields and low temperatures. A disk of aerogel is attached to a vibrating wire resonator. The resonant frequency yields a measure of the superfluid fraction rho(s)/rho of the 3He within the aerogel. The inferred rho(s)/rho value increases substantially at the A-to- B transition of the confined superfluid, allowing us to map the A-B phase diagram as a function of field and temperature. At 4.8 bars, the B-T transition curve looks very similar to that in bulk with a simple reduction factor of order 0.45 for both transition field and temperature.  相似文献   

15.
We report a direct observation of dynamical bifurcation between two plasma oscillation states of a superfluid Josephson junction. We excite the superfluid plasma resonance into a nonlinear regime by driving below the natural plasma frequency and observe a clear transition between two dynamical states. We also demonstrate bifurcation by changing the potential well with temperature variations.  相似文献   

16.
The s=1 spinor Bose condensate at zero temperature supports ferromagnetic and polar phases that combine magnetic and superfluid ordering. We analyze the topological defects of the polar condensate, correcting previous studies, and show that the polar condensate in two dimensions is unstable at any finite temperature; instead, there is a nematic or paired superfluid phase with algebraic order in exp(2itheta), where theta is the superfluid phase, and no magnetic order. The Kosterlitz-Thouless transition out of this phase is driven by unbinding of half-vortices (the spin-disordered version of the combined spin and phase defects found by Zhou), and the anomalous universal 8T(c)/pi stiffness jump at the transition is confirmed in numerical simulations. The anomalous stiffness jump is a clear experimental signature of this phase and the corresponding phase transition.  相似文献   

17.
We study the effects of an artificial gauge field on the ground-state phases of the Bose-Hubbard model on a checkerboard superlattice in two dimensions, including the superfluid phase and the Mott and alternating Mott insulators. First, we discuss the single-particle Hofstadter problem, and show that the presence of a checkerboard superlattice gives rise to a magnetic flux-independent energy gap in the excitation spectrum. Then, we consider the many-particle problem, and derive an analytical mean-field expression for the superfluid-Mott and superfluid-alternating-Mott insulator phase transition boundaries. Finally, since the phase diagram of the Bose-Hubbard model on a checkerboard superlattice is in many ways similar to that of the extended Bose-Hubbard model, we comment on the effects of magnetic field on the latter model, and derive an analytical mean-field expression for the superfluid-insulator phase transition boundaries as well.  相似文献   

18.
The type of a phase transition in the quasi-equilibrium system of exciton polaritons in a two-dimensional optical microcavity has been analyzed. It has been shown that, although the system contains two types of bosons undergoing mutual transformations into each other, only one phase transition to the superfluid state with the quasilong-range order occurs in the two-dimensional system. This phase transition is a Kosterlitz-Thouless phase transition. A new physical implementation—excitons in a photon crystal—has been proposed for the Bose condensation of exciton polaritons. The superfluid properties of the ordered phase are discussed, and the superfluid density and Kosterlitz-Thouless transition temperature have been calculated in the low-density approximation.  相似文献   

19.
Fermionic atoms confined in a potential created by standing wave light can undergo a phase transition to a superfluid state at a dramatically increased transition temperature. Depending upon carefully controlled parameters, a transition to a superfluid state of Cooper pairs, antiferromagnetic states or d-wave pairing states can be induced and probed under realistic experimental conditions. We describe an atomic physics experiment that can provide critical insight into the origin of high-temperature superconductivity in cuprates.  相似文献   

20.
We investigate unconventional superfluidity in a gas of Fermi atoms with an anisotropic p-wave Feshbach resonance. Including the p-wave Feshbach resonance as well as the associated three kinds of quasimolecules with finite orbital angular momenta Lz=+/-1,0, we calculate the transition temperature of the superfluid phase. As one passes through the p-wave Feshbach resonance, we find the usual BCS-BEC crossover phenomenon. The p-wave BCS state continuously changes into the BEC of bound molecules with L=1. Our calculation includes the effect of fluctuations associated with Cooper pairs and molecules which are not Bose condensed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号