首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   479篇
  免费   13篇
  国内免费   3篇
化学   276篇
晶体学   3篇
力学   25篇
数学   59篇
物理学   132篇
  2024年   4篇
  2023年   6篇
  2022年   10篇
  2021年   20篇
  2020年   21篇
  2019年   25篇
  2018年   11篇
  2017年   13篇
  2016年   20篇
  2015年   14篇
  2014年   24篇
  2013年   37篇
  2012年   35篇
  2011年   27篇
  2010年   14篇
  2009年   14篇
  2008年   17篇
  2007年   19篇
  2006年   11篇
  2005年   10篇
  2004年   8篇
  2003年   10篇
  2002年   7篇
  2000年   6篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1995年   2篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   6篇
  1981年   9篇
  1980年   8篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有495条查询结果,搜索用时 46 毫秒
1.
Automotive proton exchange membrane fuel cell stacks need to meet manufacturer specified rated beginning-of-life (BOL) performance before being assembled into vehicles and shipped off to customers. The process of “breaking-in” of a freshly assembled stack is often referred to as “conditioning.” It has become an intensely researched area especially in automotive companies, where imminent commercialization of fuel cell electric vehicles (FCEVs) demands a short, energy- and cost-efficient, and practical conditioning protocol. Significant advances in reducing the conditioning time from 1 to 2 days to as low as 4h or less, in some cases without the use of additional inert gases such as nitrogen, and with minimal use of hydrogen, and specialized test stations will be discussed.  相似文献   
2.
3.
This is the report of the subgroup QCD of Working Group-4 at WHEPP-9. We present the activities that had taken place in the subgroup and report some of the partial results arrived at following the discussion at the working group meetings.  相似文献   
4.
Nitration of 2-amino-4-oxo-(3H)-5-trifluoromethylquinazoline is shown to occur exclusively at C6 as determined from an analysis of long range 1H and 19F scalar couplings to ring carbons. Nitration of 2-amino-4-oxo-(3H)-5-fluoroquinazoline is found to occur both at C6 and C8 as evident from an analysis of the 19F and 1H couplings of the ring protons.  相似文献   
5.
In quasi-steady operation, convection currents in a Bridgmandevice, used for producing a semi-conductor crystal, createinhomogeneities that may make the crystal unusable. It has oftenbeen suggested that additional forces due to rotation or magnetismmight be efficacious in reducing the segregation of the elementsof the alloy. It has been found that, over a wide range of rotationrates, there is no improvement in performance due to rotationabout the vertical axis. However, numerical results that havebeen obtained previously (Lee & Pearlstein, J. Crys. Growth240, 2002) indicate that, when effects of centrifugal buoyancyare introduced, a substantial reduction in segregation is achieved.In the work reported here, by contrast, in which we extend previouslarge-Rayleigh-number asymptotic analysis to include centrifugalbuoyancy, we find no improvement in radial segregation, butrather increasing segregation with increasing rotation rate.  相似文献   
6.
Josephson effects have been observed in bulk samples of Y-Ba-Cu-O. The magnitude of the zero-voltage current is found to change systematically with externally applied small magnetic fields of a few mG. It is also found to vary when samples are irradiated with microwaves. These observations suggest the presence of inter-grain Josephson junctions.  相似文献   
7.
Treatment of o-nitrobenzenesulfonyl chloride ( 3 ) with 5-aminotetrazole (5-AT) gave [(2-nitrophenyl)-sulfonyl]carbamimidic azide ( 6 ), a ring-opened isomer of the expected N-(1H-tetrazol-5-yl)-2-nitrobenzenesulfonamide ( 4 ). Sulfonylcarbamimidic azide 6 was converted to 2-amino-N-(aminoiminomethyl)benzene-sulfonamide ( 7 ) with ethanolic stannous chloride, and to 3-amino-1,2,4-thiadiazine 1,1-dioxide ( 8 ) with sodium dithionite. Methanesulfonyl chloride ( 9 ) and 5-AT gave 2-(methylsulfonyl)carbamimidic azide ( 10 ), which isomerized to 5-[(methylsulfonyl)amino]-1H-tetrazole ( 11 ) in warm ethanol. Attempted cycloaddition of 2-(phenylsulfonyl)carbamimidic azide ( 13 ) and ethyl vinyl ether led only to alkylated tetrazole products. In addition, other tetrazole-alkylating reactions are described. Isomers produced from these alkylations were differentiated with 13C nmr spectroscopy.  相似文献   
8.
A broad collection of technologies, including e.g. drug metabolism, biofuel combustion, photochemical decontamination of water, and interfacial passivation in energy production/storage systems rely on chemical processes that involve bond-breaking molecular reactions. In this context, a fundamental thermodynamic property of interest is the bond dissociation energy (BDE) which measures the strength of a chemical bond. Fast and accurate prediction of BDEs for arbitrary molecules would lay the groundwork for data-driven projections of complex reaction cascades and hence a deeper understanding of these critical chemical processes and, ultimately, how to reverse design them. In this paper, we propose a chemically inspired graph neural network machine learning model, BonDNet, for the rapid and accurate prediction of BDEs. BonDNet maps the difference between the molecular representations of the reactants and products to the reaction BDE. Because of the use of this difference representation and the introduction of global features, including molecular charge, it is the first machine learning model capable of predicting both homolytic and heterolytic BDEs for molecules of any charge. To test the model, we have constructed a dataset of both homolytic and heterolytic BDEs for neutral and charged (−1 and +1) molecules. BonDNet achieves a mean absolute error (MAE) of 0.022 eV for unseen test data, significantly below chemical accuracy (0.043 eV). Besides the ability to handle complex bond dissociation reactions that no previous model could consider, BonDNet distinguishes itself even in only predicting homolytic BDEs for neutral molecules; it achieves an MAE of 0.020 eV on the PubChem BDE dataset, a 20% improvement over the previous best performing model. We gain additional insight into the model''s predictions by analyzing the patterns in the features representing the molecules and the bond dissociation reactions, which are qualitatively consistent with chemical rules and intuition. BonDNet is just one application of our general approach to representing and learning chemical reactivity, and it could be easily extended to the prediction of other reaction properties in the future.

Prediction of bond dissociation energies for charged molecules with a graph neural network enabled by global molecular features and reaction difference features between products and reactants.  相似文献   
9.
Modeling reactivity with chemical reaction networks could yield fundamental mechanistic understanding that would expedite the development of processes and technologies for energy storage, medicine, catalysis, and more. Thus far, reaction networks have been limited in size by chemically inconsistent graph representations of multi-reactant reactions (e.g. A + B → C) that cannot enforce stoichiometric constraints, precluding the use of optimized shortest-path algorithms. Here, we report a chemically consistent graph architecture that overcomes these limitations using a novel multi-reactant representation and iterative cost-solving procedure. Our approach enables the identification of all low-cost pathways to desired products in massive reaction networks containing reactions of any stoichiometry, allowing for the investigation of vastly more complex systems than previously possible. Leveraging our architecture, we construct the first ever electrochemical reaction network from first-principles thermodynamic calculations to describe the formation of the Li-ion solid electrolyte interphase (SEI), which is critical for passivation of the negative electrode. Using this network comprised of nearly 6000 species and 4.5 million reactions, we interrogate the formation of a key SEI component, lithium ethylene dicarbonate. We automatically identify previously proposed mechanisms as well as multiple novel pathways containing counter-intuitive reactions that have not, to our knowledge, been reported in the literature. We envision that our framework and data-driven methodology will facilitate efforts to engineer the composition-related properties of the SEI – or of any complex chemical process – through selective control of reactivity.

A chemically consistent graph architecture enables autonomous identification of novel solid-electrolyte interphase formation pathways from a massive reaction network.  相似文献   
10.
Although pyrazole formation results from treatment of 3-chloro-6-hydrazinopyridazine ( 2 ) with both ethoxymethylenemalononitrile and ethyl (ethoxymethylene)cyanoacetate, 6-chlorotriazolo[4,3-b]pyridazine ( 5 ) was produced (75% yield) when 2 was treated with diethyl ethoxymethylenemalonate. Treatment of 2 with diethyl acetylmalonate ( 8 ) gave both 6-chloro-3-methyltriazolo[4,3-b]pyridazine ( 10 ) and 5-hydroxy-3-methyl-1-(6-chloro-3-pyridazinyl)-1H-pyrazole-4-carboxylic acid ethyl ester ( 12 ). Pyrazole 12 was initially isolated as a salt of triazolopyridazine 10 .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号