首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   17篇
  国内免费   1篇
化学   559篇
晶体学   17篇
力学   8篇
数学   25篇
物理学   118篇
  2023年   3篇
  2021年   9篇
  2020年   12篇
  2019年   8篇
  2018年   8篇
  2017年   12篇
  2016年   16篇
  2015年   9篇
  2014年   16篇
  2013年   36篇
  2012年   41篇
  2011年   43篇
  2010年   28篇
  2009年   32篇
  2008年   44篇
  2007年   49篇
  2006年   38篇
  2005年   38篇
  2004年   46篇
  2003年   36篇
  2002年   23篇
  2001年   4篇
  2000年   11篇
  1999年   7篇
  1998年   10篇
  1997年   4篇
  1996年   6篇
  1995年   8篇
  1994年   14篇
  1993年   6篇
  1992年   12篇
  1990年   6篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   9篇
  1984年   3篇
  1983年   3篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1973年   5篇
  1972年   3篇
  1971年   5篇
  1969年   3篇
  1964年   3篇
  1909年   2篇
排序方式: 共有727条查询结果,搜索用时 25 毫秒
111.
We have investigated electron-boson coupling in the optical conductivity of high-Tc superconductors through the optical self-energy. The real part of the self-energy (ReΣop(ω)) of YBa2Cu3Oy (YBCO) shows a characteristic doping dependence. In the optimally doped YBCO, ReΣop(ω) has a single peak around 65 meV, which corresponds to the kink structure of the band dispersion. On the other hand, in the under-doped YBCO, the peak structure of ReΣop(ω) splits into two parts. To evaluate contribution from the phonons in electron-boson coupling, we have measured oxygen-isotope effects by substituting 16O→18O for the optimally doped and under-doped YBCO.  相似文献   
112.
113.
A combination of nuclear resonance vibrational spectroscopy (NRVS), FTIR spectroscopy, and DFT calculations was used to observe and characterize Fe?H/D bending modes in CrHydA1 [FeFe]‐hydrogenase Cys‐to‐Ser variant C169S. Mutagenesis of cysteine to serine at position 169 changes the functional group adjacent to the H‐cluster from a ‐SH to ‐OH, thus altering the proton transfer pathway. The catalytic activity of C169S is significantly reduced compared to that of native CrHydA1, presumably owing to less efficient proton transfer to the H‐cluster. This mutation enabled effective capture of a hydride/deuteride intermediate and facilitated direct detection of the Fe?H/D normal modes. We observed a significant shift to higher frequency in an Fe?H bending mode of the C169S variant, as compared to previous findings with reconstituted native and oxadithiolate (ODT)‐substituted CrHydA1. On the basis of DFT calculations, we propose that this shift is caused by the stronger interaction of the ‐OH group of C169S with the bridgehead ‐NH‐ moiety of the active site, as compared to that of the ‐SH group of C169 in the native enzyme.  相似文献   
114.
Hard X‐ray photoelectron spectroscopy (HX‐PES) has been realized using high‐brilliance synchrotron radiation. High‐energy photon excitation enables us to probe photoelectrons with larger escape depth compared to conventional PES. This allows us to conduct, without destruction, a study of the embedded interface of materials as the oxide‐ metal interface. We apply HX‐PES to investigate for Cu segregation in the oxide–metal interface during metal‐dusting corrosion. The effective concentration of Cu in the segregation was estimated a few times higher than the bulk concentration. These results on the interface layer can explain the variation in the corrosion resistance. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
115.
Exploring new porous coordination polymers (PCPs) that have tunable structure and conductivity is attractive but remains challenging. Herein, fine pore structure engineering by ligand conformation control of naphthalene diimide (NDI)-based semiconducting PCPs with π stacking-dependent conductivity tunability is achieved. The π stacking distances and ligand conformation in these isoreticular PCPs were modulated by employing metal centers with different coordination geometries. As a result, three conjugated PCPs (Co−pyNDI, Ni−pyNDI, and Zn−pyNDI) with varying pore structure and conductivity were obtained. Their crystal structures were determined by three-dimensional electron diffraction. The through-space charge transfer and tunable pore structure in these PCPs result in modulated selectivity and sensitivity in gas sensing. Zn−pyNDI can serve as a room-temperature operable chemiresistive sensor selective to acetone.  相似文献   
116.
We report the synthesis of a new series of layered hydroxides based on rare-earth elements with a composition of RE(OH)2.5Cl(0.5).0.8 H2O (RE: Eu, Tb, etc.) through the homogeneous precipitation of RECl3.x H2O with hexamethylenetetramine (HMT). Rietveld analysis combined with direct methods revealed an orthorhombic layered structure comprising a positively charged layer of [RE(OH)2.5-(H2O)0.8]0.5+ and interlayer Cl- ions. The Cl- ions were readily exchangeable for various anions (NO3-, SO4(2-), dodecylsulfonate, etc.) at ambient temperature. Photoluminescence studies showed that the compounds display typical RE3+ emission. With rare-earth-based host layers and tunable interlayer guests, the new compounds may be of interest for optoelectronic, magnetic, catalytic, and biomedical materials.  相似文献   
117.
MEM nuclear density analysis from neutron diffraction data measured in situ at 1015.6 degrees C has indicated the two-dimensional network of curved O2-O3-O2 oxide-ion diffusion paths on the (Pr,La)-O layer in a K2NiF4-type structured oxide-ionic and electronic mixed conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+delta.  相似文献   
118.
High-resolution solid-state NMR (SSNMR) of paramagnetic systems has been largely unexplored because of various technical difficulties due to large hyperfine shifts, which have limited the success of previous studies through depressed sensitivity/resolution and lack of suitable assignment methods. Our group recently introduced an approach using "very fast" magic angle spinning (VFMAS) for SSNMR of paramagnetic systems, which opened an avenue toward routine analyses of small paramagnetic systems by (13)C and (1)H SSNMR [Y. Ishii et al., J. Am. Chem. Soc. 125, 3438 (2003); N. P. Wickramasinghe et al., ibid. 127, 5796 (2005)]. In this review, we discuss our recent progress in establishing this approach, which offers solutions to a series of problems associated with large hyperfine shifts. First, we demonstrate that MAS at a spinning speed of 20 kHz or higher greatly improves sensitivity and resolution in both (1)H and (13)C SSNMR for paramagnetic systems such as Cu(II)(DL-alanine)(2)H(2)O (Cu(DL-Ala)(2)) and Mn(acac)(3), for which the spectral dispersions due to (1)H hyperfine shifts reach 200 and 700 ppm, respectively. Then, we introduce polarization transfer methods from (1)H spins to (13)C spins with high-power cross polarization and dipolar insensitive nuclei enhanced by polarization transfer (INEPT) in order to attain further sensitivity enhancement and to correlate (1)H and (13)C spins in two-dimensional (2D) SSNMR for the paramagnetic systems. Comparison of (13)C VFMAS SSNMR spectra with (13)C solution NMR spectra revealed superior sensitivity in SSNMR for Cu(DL-Ala)(2), Cu(Gly)(2), and V(acac)(3). We discuss signal assignment methods using one-dimensional (1D) (13)C SSNMR (13)C-(1)H rotational echo double resonance (REDOR) and dipolar INEPT methods and 2D (13)C(1)H correlation SSNMR under VFMAS, which yield reliable assignments of (1)H and (13)C resonances for Cu(Ala-Thr). Based on the excellent sensitivity/resolution and signal assignments attained in the VFMAS approach, we discuss methods of elucidating multiple distance constraints in unlabeled paramagnetic systems by combing simple measurements of (13)C T(1) values and anisotropic hyperfine shifts. Comparison of experimental (13)C hyperfine shifts and ab initio calculated shifts for alpha- and beta-forms of Cu(8-quinolinol)(2) demonstrates that (13)C hyperfine shifts are parameters exceptionally sensitive to small structural difference between the two polymorphs. Finally, we discuss sensitivity enhancement with paramagnetic ion doping in (13)C SSNMR of nonparamagnetic proteins in microcrystals. Fast recycling with exceptionally short recycle delays matched to short (1)H T(1) of approximately 60 ms in the presence of Cu(II) doping accelerated 1D (13)C SSNMR for ubiquitin and lysozyme by a factor of 7.3-8.4 under fast MAS at a spinning speed of 40 kHz. It is likely that the VFMAS approach and use of paramagnetic interactions are applicable to a variety of paramagnetic systems and nonparamagnetic biomolecules.  相似文献   
119.
120.
The authors introduce a method for spatially arranged DNA immobilization on 10-nm gold nanoparticles (GNP) deposited on a silicon substrate carrying nanogapped interdigitated electrodes. The GNPs are covalently bound to the surface via silane chemistry, and the single steps of fabrication are monitored by FTIR spectroscopy and atomic force microscopy. This GNP deposition technique is shown to reduce the size of the nanogaps to 130 nm. FTIR also was used to monitor the immobilization of DNA on the surface of the interdigitated electrodes. This method allows DNA to be immobilized in a uniform and homogenous way. The utility of the method is demonstrated by immobilizing probe DNA on the surface and detecting target DNA specific for the human papilloma virus via fluorescence with a detection limit as low as 1 pM. In our perception, this method for GNP-mediated DNA immobilization enables high-performance sensing of a wide range of target (analyte) DNA.
Graphical abstract Schematic presentation of gold nanoparticle-mediated and spatially resolved deposition of DNA on nano-gapped interdigitated electrodes. The method was applied to the chemiluminescent determination of the human papillomavirus
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号