首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17307篇
  免费   3114篇
  国内免费   2073篇
化学   12521篇
晶体学   173篇
力学   1020篇
综合类   103篇
数学   1812篇
物理学   6865篇
  2024年   42篇
  2023年   398篇
  2022年   378篇
  2021年   623篇
  2020年   736篇
  2019年   715篇
  2018年   630篇
  2017年   569篇
  2016年   856篇
  2015年   821篇
  2014年   993篇
  2013年   1265篇
  2012年   1585篇
  2011年   1515篇
  2010年   1058篇
  2009年   981篇
  2008年   1088篇
  2007年   1021篇
  2006年   939篇
  2005年   847篇
  2004年   607篇
  2003年   514篇
  2002年   508篇
  2001年   397篇
  2000年   357篇
  1999年   425篇
  1998年   345篇
  1997年   337篇
  1996年   318篇
  1995年   269篇
  1994年   221篇
  1993年   197篇
  1992年   152篇
  1991年   134篇
  1990年   154篇
  1989年   111篇
  1988年   75篇
  1987年   52篇
  1986年   59篇
  1985年   59篇
  1984年   29篇
  1983年   30篇
  1982年   30篇
  1981年   19篇
  1980年   10篇
  1977年   3篇
  1957年   2篇
  1942年   2篇
  1930年   2篇
  1916年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The synthesis of ammonia (NH3) through the electrochemical reduction of molecular nitrogen (N2) is a promising strategy for significantly reducing energy consumption compared to traditional industrial processes. Herein, we report the design of a series of monovacancy and divacancy defective graphenes decorated with single 3d transition metal atoms (TM@MVG and TM@DVG; TM=Sc−Zn) as electrocatalysts for the nitrogen-reduction reaction (NRR) aided by density functional theory (DFT) calculations. By comparing energies for N2 adsorption as well as the free energies associated with *N2 activation and *N2H formation, we successfully identified V@MVG, with the lowest potential of −0.63 V, to be an effective catalytic substrate for the NRR in an enzymatic mechanism. Electronic properties, including Bader charges, charge density differences, partial densities of states, and crystal orbital Hamilton populations, are further analyzed in detail. We believe that these results help to explain recent observations in this field and provide guidance for the exploration of efficient electrocatalysts for the NRR.  相似文献   
992.
In this paper, a label-free fluorescent method for glutathione (GSH) detection based on a thioflavin T/G-quadruplex conformational switch is developed. The sensing assay is fabricated depending on the virtue of mercury ions to form a thymine–thymine mismatch, which collapses the distance between two ssDNA and directs the guanine-rich part to form an intra-strand asymmetric split G-quadruplex. The newly formed G-quadruplex efficiently reacts with thioflavin T and enhances the fluorescent intensity. In the presence of GSH, Hg2+ is absorbed, destroying the G-quadruplex formation with a significant decrease in fluorescence emission. The proposed fluorescent assay exhibits a linear range between 0.03–5 μM of GSH with a detection limit of 9.8 nM. Furthermore, the efficacy of this method is examined using human serum samples to detect GSH. Besides GSH, other amino acids are also investigated in standard samples, which display satisfactory sensitivity and selectivity. Above all, we develop a method with features including potentiality, facility, sensitivity, and selectivity for analyzing GSH for clinical diagnostics.  相似文献   
993.
In order to alleviate the contradiction between injectability of the profile control agent and its profile control performance, a novel core‐shell heterogeneous structure colloidal particles (CSA) were synthesized, and the mechanism of self‐aggregation plugging was proposed. Cross‐linking inside the nanoparticles and chain‐growth polymerization via capturing acrylamide in the aqueous phase result in the formation of core‐shell heterogeneous structures as proved by TEM observation and XPS analysis. Moreover, CSA nanoparticles exhibit good hydrophilic properties, outstanding thermal stability and limited expansion capacity. Effects of different metal cations and surface group on the self‐aggregation time of CSA nanoparticles were systematically studied. Results showed that divalent cations contributed to more significant aggregation of CSA nanoparticles in comparison to monovalent cations. The increasing cations concentration and valency decreased the thickness of electric double layer, which lead to a decrease in the zeta potential. Core flooding test shows that the injection of nanoparticles which diameter is much smaller that of pore‐throats into the target reservoir can not only successfully enter the depth of porous media, but also effectively block the high permeability areas by the formation of self‐aggregation particle clusters. This study provides a new method for the equilibrium between nanoparticles injectivity and in‐depth profile control of nanoparticles.  相似文献   
994.
Carboxymethyl chitosan (CMCS), as a water‐soluble, biocompatible, and biodegradable polymer, is an excellent carrier for a sustained drug delivery system. In this study, a amphiphilic carboxymethyl chitosan‐ursolic acid nano‐drug carrier modified by folic acid (FPCU) were prepared, and then the nano‐drug carrier wrapped another anticancer drug 10‐hydroxycamptothecin were self‐assembled into nanoparticles (FPCU/HCPT NPs). The FPCU/HCPT NPs had a suitable size, high drug loading efficiency of ursolic acid (6.4%) and 10‐hydroxycamptothecin (14.1%). The drug release study in vitro indicated that the nanoparticles have obviously sustained effect and pH sensitive behaviors, the drug release amount was higher at pH 5.5 than at pH 7.4. in vitro and in vivo study showed that the nanoparticles displayed a high antitumor efficiency to tumor cells compared with free drug. The nano delivery system as a carrier for ursolic acid (UA) and 10‐hydroxycamptothecin (HCPT) has good application prospects in cancer treatment.  相似文献   
995.
The aim of this research was to investigate the effect of the number of freeze–thaw cycles (0, 1, 3, 5, and 7) on porcine longissimus protein and lipid oxidation, as well as changes in heterocyclic aromatic amines (HAAs) and advanced glycation end products (AGEs) and their precursors. We analyzed the relationship among HAAs, AGEs, oxidation, and precursors and found the following results after seven freeze–thaw cycles. The HAAs, Norharman and Harman, were 20.33% and 16.67% higher, respectively. The AGEs, Nε-carboxyethyllysine (CEL) and Nε-carboxymethyllysine (CML), were 11.81% and 14.02% higher, respectively. Glucose, creatine, and creatinine were reduced by 33.92%, 5.93%, and 1.12%, respectively after seven freeze–thaw cycles. Norharman was significantly correlated with thiobarbituric acid reactive substances (TBARS; r2 = 0.910) and glucose (r2 = −0.914). Harman was significantly correlated to TBARS (r2 = 0.951), carbonyl (r2 = 0.990), and glucose (r2 = −0.920). CEL was correlated to TBARS (r2 = 0.992) and carbonyl (r2 = 0.933). These changes suggest that oxidation and the Maillard reaction during freeze–thaw cycles promote HAA and AGE production in raw pork.  相似文献   
996.
Currently, chemotherapy is one of the most important treatment modalities for malignant tumors in the clinic, however, it exhibits some shortcomings, such as poor selectivity, limited efficacy and serious adverse effects. Therefore, synergistic therapy and accurate drug delivery at tumor sites become a promising strategy for achieving tumor eradication. Herein, a smart NIR fluorescence imaging-guided nanoliposome was fabricated by encapsulating a chemotherapeutic drug(doxorubicin, DOX), liposomes(L) and a near-infrared(NIR) photosensitizer(CY) to form L@CY@DOX, which could realize enhanced therapeutic efficacy of chemo-PDT in cancer therapy(PDT=photodynamic therapy). L@CY@DOX can induce mitochondrial apoptosis and produce severe toxicity at the cellular level, and L@CY@DOX can enrich in the tumor site, which significantly induces tumor death. In vitro and in vivo studies demonstrated that L@CY@DOX exhibited great antitumor efficacy compared with each one of these monotherapies, indicating that the combination of chemotherapy and PDT possessed potential development prospects and is anticipated in clinical application.  相似文献   
997.
李超  乔瑶雨  李禹红  闻静  何乃普  黎白钰 《化学进展》2021,33(11):1964-1971
金属有机框架(MOFs)具有大量的孔隙结构和活性位点,在气体吸附、催化、医疗等领域均发挥了巨大的作用。MOFs是晶体粉末,具有脆性较大、在水中易分解和不易回收等缺点,从而限制了其应用。通过MOFs与柔性高分子的复合,特别是与水凝胶的复合,极大地改善了复合材料的柔顺性、可回收和可加工性等特性,进一步拓宽了MOFs的应用领域。本文详细阐述了基于水凝胶MOFs原位生成法、MOFs /水凝胶同时生成法和水凝胶包裹MOFs法等三种不同方法制备MOFs/水凝胶复合材料的研究进展,并对上述三种制备方法的特点及其产物特征进行了总结,进一步归纳了复合材料在生物医药、催化、废水处理和气体吸附等领域的应用。最后,对MOFs/水凝胶复合材料制备方法的改进和复合材料应用前景进行了深入讨论和展望。  相似文献   
998.
Since the discovery of left-handed G-quadruplex (L-G4) structure formed by natural DNA, there has been a growing interest in its potential functions. This study utilised it to catalyse enantioselective Diels-Alder reactions, considering its different optical rotation compared to an ordinary G4. It was determined that when L-G4 was used with a combination of copper(II) ions, there was a good enantioselectivity (?52% ee) without further addition of ligands. When further consideration was given by adding G4 ligands, G4 was further stabilised, even obtaining a better enantioselectivity (up to ?80% ee). Moreover, when using ligands that have regulatory effects on G4, the ee value can be adjusted. In this work, a minimal left-handed G4 was reported. A follow-up study was also conducted, which recovers that the minimal left-handed G4 remains its catalytic effect and enantioselectivity, but is not so effective as the former case. This indicates that a complete G4 structure is relatively conducive to chiral catalysis.  相似文献   
999.
Over the past two decades, progress in chemistry has generated various types of porous materials for removing iodine (129I or 131I) that can be formed during nuclear energy generation or nuclear waste storage. However, most studies for iodine capture are based on the weak host-guest interactions of the porous materials. Here, we present two cationic nonporous macrocyclic organic compounds, namely, MOC-1 and MOC-2 , in which 6I- and 8I were as counter anions, for highly efficient iodine capture. MOC-1 and MOC-2 were formed by reacting 1,1′-diamino-4,4′-bipyridylium di-iodide with 1,2-diformylbenzene or 1,3-diformylbenzene, respectively. The presence of a large number of I anions results in high I2 affinity with uptake capacities up to 2.15 g ⋅ g−1 for MOC-1 and 2.25 g ⋅ g−1 for MOC-2 .  相似文献   
1000.
Although the production of near-infrared (NIR)-absorbing organic polymers with an excellent nonlinear optical (NLO) response is vital for various optoelectronic devices and photodynamic therapy, the molecular design and relevant photophysical investigation still remain challenging. In this work, large NLO activity is observed for an NIR-absorbing bithiophene-based polymer with a unique head-to-head linkage in the NIR region. The saturable absorption coefficient and modulation depth of the polymer are determined as ∼−3.5×105 cm GW−1 and ∼32.43%, respectively. Notably, the polymer exhibits an intrinsic nonlinear refraction index up to ∼−9.36 cm2 GW−1, which is six orders of magnitude larger than that of CS2. The maximum molar-mass normalized two-photon absorption cross-section (σ2/M) of this polymer can be up to ∼14 GM at 1200 nm. Femtosecond transient absorption measurements reveal significant spectral overlap between the 2PA and excited state absorption in the 1000–1400 nm wavelength range and an efficient triplet quantum yield of ∼36.7%. The results of this study imply that this NIR-absorbing polymer is promising for relevant applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号