首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78679篇
  免费   366篇
  国内免费   383篇
化学   24768篇
晶体学   791篇
力学   6725篇
数学   32033篇
物理学   15111篇
  2019年   28篇
  2018年   10439篇
  2017年   10266篇
  2016年   6080篇
  2015年   865篇
  2014年   307篇
  2013年   349篇
  2012年   3820篇
  2011年   10532篇
  2010年   5678篇
  2009年   6069篇
  2008年   6630篇
  2007年   8783篇
  2006年   241篇
  2005年   1339篇
  2004年   1568篇
  2003年   1984篇
  2002年   1040篇
  2001年   265篇
  2000年   305篇
  1999年   170篇
  1998年   202篇
  1997年   165篇
  1996年   208篇
  1995年   125篇
  1994年   81篇
  1993年   104篇
  1992年   60篇
  1991年   68篇
  1990年   59篇
  1989年   59篇
  1988年   61篇
  1987年   64篇
  1986年   63篇
  1985年   56篇
  1984年   49篇
  1983年   41篇
  1982年   50篇
  1981年   45篇
  1980年   56篇
  1979年   54篇
  1978年   36篇
  1973年   28篇
  1914年   49篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
  1907年   32篇
  1904年   28篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
Polyacrylonitrile (PAN) polymers are used as precursors for carbon fiber production. This process requires an oxidative stabilization step, which can be studied by differential scanning calorimetry (DSC). In this sense, thermal behavior of PAN based terpolymers by different polymerization processes, compositions and itaconic acid concentrations in the reaction media were investigated. The obtained results showed that the addition of itaconic acid and methyl acrylate as comonomers resulted a lower heat flow during the process comparing to the PAN homopolymer. It suggested that these comonomers aid the oxidative stabilization stage for all studied process. The redox system polymerization at 40°C resulted in a lower heat flow. Itaconic acid decreases slightly initial and peak temperatures of the terpolymer and heat flow until concentration of 3y. The cyclization temperature decreases when MAis incorporated into the terpolymer compared to the MMA terpolymer and increases when MAA is the acidic monomer. Among terpolymers the AN/MA/AA polymer showed the best thermal behavior for carbon fiber producing.  相似文献   
952.
953.
In the present work, corrosion resistance of surface-coated galvanized steel was quantitatively determined by an analysis of the alternating current (AC) impedance spectra measured on the salt-spray-tested specimen. To evaluate the corrosion resistance of the surface-coated galvanized steel, AC impedance spectroscopy was performed on the salt-spray-tested specimen previously exposed to salt-sprayed corrosive environment. From the analysis of the impedance spectra, the area fraction transient of white rust θ 2(t) was theoretically derived from the equivalent circuit equation by using two fitting parameters. The values of the two fitting parameters were determined by fitting the empirical transient equations to the area fraction of the resin coating layer and to the total resistance obtained from the impedance spectra measured, respectively. From the analyses of θ 2(t) for four kinds of surface-coated galvanized steels with various resin coating layers, it is indicated that as the values of the two fitting parameters decrease in the order of CP, GI, OD and OM (commercial trade names) specimens, the corrosion resistance increases in that order as well. Furthermore, from the quantitative comparison of the two fitting parameters with the polarization resistance of the upper resin coating layer R p determined from the potentiodynamic polarization curve, it is suggested that the two fitting parameters decrease in value as well with increasing R p.  相似文献   
954.
We have measured the second acid dissociation constant, K 2a , at several ionic strengths for hydrogen telluride (H2Te) using the Charge Transfer to Solvent (CTTS) uv spectra of its anions HTe and Te2−. Since it is produced in our solutions, we have also determined the spectra of Te2 2− both in the uv and in the visible regions. At 25 C, K 2a = (1.28 ± 0.02) × 10−12 by extrapolation to zero ionic strength. Its value at an ionic strength equal to 0.5 mol.dm-3 was estimated to be (8.7 ± 0.2) × 10−12. The solution thermodynamics of these species are also discussed and comparisons are made to related acids.  相似文献   
955.
Summary The standard molar enthalpy of formation of methyl methylthiomethyl sulfoxide, CH3(CH3SCH2)SO, at T=298.15 K in the liquid state was determined to be -199.4±1.5 kJ mol-1 by means of oxygen rotating-bomb combustion calorimetry.  相似文献   
956.
The enthalpy change of formation of the reaction of hydrous dysprosium chloride with ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline (o-phen?H2O) in absolute ethanol at 298.15 K has been determined as (-16.12 ± 0.05) kJ?mol-1 by a microcalormeter. Thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), rate constant and kinetics parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of the reaction have also been calculated. The enthalpy change of the solid-phase reaction at 298.15 K has been obtained as (53.59 ± 0.29) kJ?molt-1 by a thermochemistry cycle. The values of the enthalpy change of formation both in liquid-phase and solid-phase reaction indicated that the complex could only be synthesized in liquid-phase reaction.  相似文献   
957.
The ferroin-catalyzed Belousov-Zhabotinsky(BZ) reaction,the oxidation of malonic acid by acidic bromate,is the most commonly investigated chemical system for understanding spatial pattern forma-tion. Various oscillatory behaviors were found from such as mixed-mode and simple period-doubling oscillations and chaos on both Pt electrode and Br-ISE at high flow rates to mixed-mode oscillations on Br-ISE only at low flow rates. The complex dynamic behaviors were qualitatively reproduced with a two-cycle coupling model proposed initially by Gy?rgyi and Field. This investigation offered a proper medium for studying pattern formation under complex temporal dynamics. In addition,it also shows that complex oscillations and chaos in the BZ reaction can be extended to other bromate-driven nonlinear reaction systems with different metal catalysts.  相似文献   
958.
Fluorescence and spectral hole burning properties of Eu3+ ions were studied in nanocrystals-precipitated SnO2-SiO2 glasses. The glasses were prepared to contain various amount of Eu2O3 using the sol-gel method, in which SnO2 nanocrystals were precipitated by heating in air. In the glasses containing Eu2O3 less than 1%, the Eu3+ ions were preferentially doped in the SnO2 nanocrystals and their fluorescence intensities were enhanced by the energy transfer due to the recombination of electrons and holes excited in SnO2 crystals. The SnO2 nanocrystals-precipitated glasses exhibited the persistent spectral holes with the depth of ∼25% of the total fluorescence intensities of the Eu3+ ions. With the increasing Eu2O3 concentration, the amount of SnO2 nanocrystals decreased and the Sn4+ ions formed the random glass structure together with the silica network. This structure change induced the fluorescence intensities and the hole depth to decrease.  相似文献   
959.
A kind of novel mesoporous, electrochemical active material, amorphous MnO2 has been synthesized by an improved reduction reaction and using supramolecular as template. The synthesized sample was characterized physically by thermogravimetric analysis, X-ray diffraction, transmission electron microscope (TEM), and Brunauer–Emmett–Teller (BET) surface area measurement, respectively. Electrochemical characterization was performed using cyclic voltammetry and chronopotentiometry in 2 mol/l KOH aqueous solution electrolyte. The results of BET and TEM analysis indicated that supramolecular template plays an important role in the process of big specific surface area mesoporous material forming. After sintering at 200 °C, the sample still remained an amorphous structure, and its specific capacitance reached 298.7 F/g and presented a very stable capacitance after 500 cycles. In addition, the electrochemical process, such as ion transfer and electrical condition, was also investigated with electrochemical impedance spectroscopy.  相似文献   
960.
A heterogeneous, multi-layer mass transfer model is proposed for prediction of the effect of multi-layer packing of catalyst particles adhered to the gas-liquid interface. The behavior of the mass transfer rate with respect to the multi-layer packing, to the particle size and mass transfer coefficient without particles is discussed. It is shown that enhancement can be considerably increased by multi-layer packing compared to that of mono-layer packing, depending on the values of particle size and mass transfer coefficient. The predicted mass transfer rates using the proposed model was verified with experimental data taken from the literature. The model presented should be superior to that of published in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号