首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28724篇
  免费   85篇
  国内免费   272篇
化学   10348篇
晶体学   261篇
力学   1375篇
综合类   12篇
数学   8993篇
物理学   8092篇
  2020年   35篇
  2018年   1192篇
  2017年   1444篇
  2016年   705篇
  2015年   543篇
  2014年   460篇
  2013年   647篇
  2012年   3120篇
  2011年   2288篇
  2010年   1791篇
  2009年   1535篇
  2008年   542篇
  2007年   594篇
  2006年   583篇
  2005年   4424篇
  2004年   3897篇
  2003年   2285篇
  2002年   475篇
  2001年   287篇
  2000年   85篇
  1999年   168篇
  1998年   110篇
  1997年   70篇
  1996年   42篇
  1995年   45篇
  1994年   43篇
  1992年   172篇
  1991年   155篇
  1990年   135篇
  1989年   106篇
  1988年   100篇
  1987年   57篇
  1986年   44篇
  1985年   41篇
  1984年   32篇
  1983年   29篇
  1982年   25篇
  1979年   31篇
  1978年   26篇
  1976年   80篇
  1975年   37篇
  1974年   41篇
  1973年   49篇
  1972年   39篇
  1971年   25篇
  1970年   34篇
  1969年   37篇
  1968年   35篇
  1967年   30篇
  1966年   38篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Nanoparticle labels have enhanced the performance of diagnostic, screening, and other measurement applications and hold further promise for more sensitive, precise, and cost-effective assay technologies. Nevertheless, a clear view of the biomolecular interactions on the molecular level is missing. Controlling the ratio of molecular recognition over undesired nonspecific adhesion is the key to improve biosensing with nanoparticles. To improve this ratio with an aim to disallow nonspecific binding, a more detailed perspective into the kinetic differences between the cases is needed. We present the application of two novel methods to determine complex binding kinetics of bioconjugate nanoparticles, interferometry, and force spectroscopy. Force spectroscopy is an atomic force microscopy technique and optical interferometry is a direct method to monitor reaction kinetics in second-hour timescale, both having steadily increasing importance in nanomedicine. The combination is perfectly suited for this purpose, due to the high sensitivity to detect binding events and the ability to investigate biological samples under physiological conditions. We have attached a single biofunctionalized nanoparticle to the outer tip apex and studied the binding behavior of the nanoparticle in a sandwich-type immunoassay using dynamic force spectroscopy in millisecond timescale. Utilization of the two novel methods allowed characterization of binding kinetics in a time range spanning from 50 ms to 4 h. These experiments allowed detection and demonstration of differences between specific and nonspecific binding. Most importantly, nonspecific binding of a nanoparticle was reduced at contact times below 100 ms with the solid-phase surface.
Figure A single biofunctionalized nanoparticle was attached to the outer tip apex and the binding behavior of the nanoparticle in a sandwich-type immunoassay, A) without analyte, B) with analyte and C) saturating analyte concentration, was recorded using dynamic force spectroscopy in millisecond timescale. The setting allowed measurement of the association speed of nonspecific binding.
  相似文献   
992.
The gas–liquid partitioning behavior of major odorants (acetic acid, propionic acid, isobutyric acid, n-butyric acid, i-valeric acid, n-valeric acid, hexanoic acid, phenol, p-cresol, indole, skatole, and toluene (as a reference)) commonly found in microbially digested wastewaters was investigated by two experimental approaches. Firstly, a simple vaporization method was applied to measure the target odorants dissolved in liquid samples with the aid of sorbent tube/thermal desorption/gas chromatography/mass spectrometry. As an alternative method, an impinger-based dynamic headspace sampling method was also explored to measure the partitioning of target odorants between the gas and liquid phases with the same detection system. The relative extraction efficiency (in percent) of the odorants by dynamic headspace sampling was estimated against the calibration results derived by the vaporization method. Finally, the concentrations of the major odorants in real digested wastewater samples were also analyzed using both analytical approaches. Through a parallel application of the two experimental methods, we intended to develop an experimental approach to be able to assess the liquid-to-gas phase partitioning behavior of major odorants in a complex wastewater system. The relative sensitivity of the two methods expressed in terms of response factor ratios (RFvap/RFimp) of liquid standard calibration between vaporization and impinger-based calibrations varied widely from 981 (skatole) to 6,022 (acetic acid). Comparison of this relative sensitivity thus highlights the rather low extraction efficiency of the highly soluble and more acidic odorants from wastewater samples in dynamic headspace sampling.  相似文献   
993.

Background

The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials.

Results

The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 × 10-2 - 4.0 × 10-6, 1 × 10-2 - 5.0 × 10-6, 1 × 10-2 - 5.0 × 10-6 M), with detection limits of 3 × 10-6, 4 × 10-6 and 4.0 × 10-6 M for sensor 1, 2 and 3, respectively over a pH range of 6.0 - 9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 μg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6% and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2 and 3 respectively.

Conclusions

The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin.
  相似文献   
994.

Background

Most of the benzyladenine and furfuryladenine derivatives inhibit tumor/cancer cell growth; their toxicity is lesser than the compounds used for the treatment of cancer now-a-days. Many cytokinin derivatives are tested for anticancer activity.

Results

A series of transition metal complexes containing N6-benzyl/furfuryl aminopurines of formula [Mn(FAH)2(H2O)(Cl3)]2.Cl2(1), [Co(FAH)2(H2O)(Cl3)]2.Cl2(2), [Co(FAH)2(Cl4)]2 .[Co(FAH)2(H3O)(Cl3)].Cl2(3), [Ni(FAH)2(H2O)(Cl3)]2.Cl2. (H2O) (4), [Zn(BAH)Br3] (5) and [Cd2(BAH)2(μ-Br)4Br2]n(6) (where BAH and FAH benzyladeninium and furfuryladeninium cations respectively) have been synthesized and characterized. Crystal structures of (1-4) have similar distorted octahedral coordination geometry, while (5) and (6) have distorted tetrahedral geometry and octahedral geometries respectively. In (1-4) two halide ions and two cytokinin cations (BAH+/FAH+) are laterally coordinated to the metal ion. A water molecule and a halide ion are axially coordinated. But the coordination sphere of (5) consists of N7 coordinated benzyladeninium ion and three halide ions. The complex (6) is a coordination polymer bridged by bromide anions. A common notable feature in (1-4) is the presence of one or more lattice chloride anions. They help in a chain formation by N-H…Cl halide involving hydrogen bonding interactions in between the Hoogsteen site hydrogen.

Conclusions

The observed crystal structures emphasize the role of the halide ions in developing the supramolecular architectures by halide involving hydrogen bonding interactions. Also most of the reported cobalt cytokinin complexes possess tetrahedral coordination geometry, but some cobalt complexes have distorted octahedral coordination geometry, which are discussed and compared.
Graphical Abstract Supramolecular architectures of some coordination metal complexes of N6-benzyl/furfuryl adenine.
  相似文献   
995.
New vapor-liquid equilibria (VLE) data at 323.15, 333.15, 343.15, and 353.15 K and pressures up to 112.9 bar are reported for the carbon dioxide + 2-methyl-2-propanol system. The experimental method used in this work was a static analytical method with liquid and vapor phases sampling using a rapid online sampler injector (ROLSI?) coupled to a gas chromatograph (GC) for analysis. Measured VLE data and literature data for carbon dioxide + 2-methyl-2-propanol system were modeled with the Soave-Redlich-Kwong (SRK) cubic equation of state with classical van der Waals (two-parameter conventional mixing rule, 2PCMR) mixing rules. A single set of interaction parameters that lead to a correct phase behavior was used in this work to model the new VLE data and critical points of the mixtures in a wide range of temperature and pressure. The SRK prediction results were compared to the new data measured in this study and to available literature data.
  相似文献   
996.
Quinine sulfate dihydrate (QNS), IUPAC name: (8S,9R)-6-methoxy-4-quinolenyl-5-vinyl-2-quinuclidinyl methanol sulfate dihydrate, was tested as corrosion inhibitor for carbon steel in 1.5 mol L?1 HCl solution using the potentiodynamic polarization and the electrochemical impedance spectroscopy (EIS) associated with UV-Vis spectrophotometry. The electrochemical results showed that, the inhibition efficiency (IE) increased with the increase in QNS concentration, reaching a maximum value of 93.35±0.25%. The polarization resistance (R p) followed the same trend, obtaining the highest value of 659.7 Ω cm2, while the corrosion current density (i corr) reached the lowest level of 195 µA cm?2. The action mechanism of QNS was proposed considering the ability of quinine (QN) to be adsorbed on the metal surface via the lone pairs of electrons from hydroxyl oxygen atom, and/or from quinoline and quinuclidinic nitrogens. The occurrence of the complexes between inhibitor and iron ions was considered an additional process, which may contribute to protective layer formation. The Temkin adsorption isotherm was found as the best fitting for the degree of surface coverage (θ) values. In order to elucidate the mechanism of protective layer formation, the free energy of adsorption (ΔG o ads) value was calculated. This indicates that the inhibitor acts by chemical adsorption on the steel surface.
  相似文献   
997.
Protein–protein interactions are of utmost importance to an understanding of biological phenomena since non-covalent and therefore reversible couplings between basic proteins leads to the formation of complex regulatory and adaptive molecular systems. Such systems are capable of maintaining their integrity and respond to external stimuli, processes intimately related to living organisms. These interactions, however, span a wide range of dissociation constants, from sub-nanomolar affinities in tight complexes to high-micromolar or even millimolar affinities in weak, transiently formed protein complexes. Herein, we demonstrate how novel NMR and EPR techniques can be used for the characterization of weak protein–protein (ligand) complexes. Applications to intrinsically disordered proteins and transiently formed protein complexes illustrate the potential of these novel techniques to study hitherto unobserved (and unobservable) higher-order structures of proteins.  相似文献   
998.
Cellulose - Core–shell nanoparticles (NPs) based on metal oxides, namely magnesium oxide (MgO) and silica (SiO2), are a fantastic alternative for natural fibers’ functionalization. In...  相似文献   
999.
1000.
该文基于牛血清白蛋白模板金纳米簇(BSA@AuNCs)与羟基氧化钴(CoOOH)纳米片构建了一种激活型荧光纳米探针用于生物硫醇的检测。带负电的BSA@AuNCs能通过静电吸附作用组装到带正电的CoOOH纳米片表面,与此同时,BSA@AuNCs的荧光由于内滤效应(IFE)有效地被CoOOH纳米片猝灭,形成BSA@AuNCs-CoOOH纳米探针。当向纳米探针溶液加入生物硫醇(0.05~150 μmol/L)时,生物硫醇与纳米探针中的CoOOH纳米片发生氧化还原反应,CoOOH纳米片被降解生成Co2+,同时释放出BSA@AuNCs,BSA@AuNCs荧光信号恢复。结果表明,该纳米探针可以检测低浓度的生物硫醇,对生物硫醇(半胱氨酸、谷胱甘肽和高半胱氨酸)的检出限为30 nmol/L。相对于其他的氨基酸、金属离子及糖类化合物,该纳米探针对生物硫醇具有较高的选择性并成功应用于人血清样品中生物硫醇的检测。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号