首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
力学   13篇
数学   10篇
物理学   2篇
  2020年   2篇
  2016年   2篇
  2013年   4篇
  2012年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
11.
12.
This paper examines the destabilization of the equilibria of reversible dynamical systems which is induced by the addition of irreversible perturbations. Attention is restricted to reversible dynamical systems which have frequently appeared in the literature on elastic stability. There they are often referred to as follower force problems. The destabilization phenomenon is linear in nature and explicit criteria are established to determine the particular eigenvalue splittings. The post-destabilization dynamics are also examined using the appropriate normal forms for two specific cases, one where the eigenvalues are non-resonant and the other where the eigenvalues are in a strong one-to-one resonance. Finally, the destabilization criteria and certain features of the post-destabilization dynamics are illustrated using two examples of follower force systems.  相似文献   
13.
In this paper, a new scheme of stochastic averaging using elliptic functions is presented that approximates nonlinear dynamical systems with strong cubic nonlinearities in the presence of noise by a set of Itô differential equations. This is an extension of some recent results presented in deterministic dynamical systems. The second order nonlinear differential equation that is examined in this work can be expressed as % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qeguuDJXwAKbacfiGaf8hEaGNbamaacqGHRaWkcaWGJbadcaaIXaGc% cqWF4baEcqGHRaWkcaWGJbadcaaIZaGccqWF4baEdaahaaWcbeqaai% aaiodaaaGccqGHRaWkcqaH1oqzcaWGMbGaaiikaiab-Hha4jaacYca% cqWFGaaicuWF4baEgaGaaiaacMcacqGHRaWkcqaH1oqzdaahaaWcbe% qaaiaaigdacaGGVaGaaGOmaaaaruWrL9MCNLwyaGGbcOGaa43zaiaa% cIcacqWF4baEcaGGSaGae8hiaaIaf8hEaGNbaiaacaGGSaGae8hiaa% IaeqOVdGNaaeikaiaadshacaqGPaGaaiykaiabg2da9iaaicdaaaa!645D!\[\ddot x + c1x + c3x^3 + \varepsilon f(x, \dot x) + \varepsilon ^{1/2} g(x, \dot x, \xi {\text{(}}t{\text{)}}) = 0\] where c 1 and c 3 are given constants, (t) is stationary stochastic process with zero mean and 1 is a small parameter. This method involves the laborious manipulation of Jacobian elliptic functions such as cn, dn and sn rather than the usual trigonometric functions. The use of a symbolic language such as Mathematica reduces the computational effort and allows us to express the results in a convenient form. The resulting equations are Markov approximations of amplitude and phase involving integrals of elliptic functions. Finally, this method was applied to study some standard second order systems.  相似文献   
14.
Summary. The global dynamics of flexible spinning discs are studied. The discs studied are parametrically excited in their spin rate, and have imperfections that cause symmetry-breaking. After determining the equations of motion in a suitable form, the energy-phase method is employed to show the existence of chaotic dynamics by identifying multipulse jumping orbits in the perturbed phase space. We provide restrictions on the damping, forcing, and symmetry-breaking parameters in order for these complicated dynamics to occur. The dissipative version of the energy-phase method predicts a wider range of values for which chaotic dynamics occurs than the traditional Melnikov method. The results are then discussed in terms of the physical motion of the spinning disc system. The multipulse orbits are manifested in the physical system as a shifting between two different nodal configurations of the disc. When the motion is chaotic, an observer will see a random jumping between the two nodal configurations of the disc. Received February 7, 2000; accepted November 18, 2001  相似文献   
15.
Sri Namachchivaya  N.  Sowers  Richard B. 《Meccanica》2002,37(1-2):85-114
We consider a random perturbation of a two-dimensional Hamiltonian system with an isolated elliptic fixed point; that is, a center. Under an appropriate change of time, we identify a reduced stochastically-averaged model. We give a rigorous proof of averaging at the center. Our main technique is to use the martingale problem. Our formulation of the result is in a sufficiently abstract setting that it agrees with more complicated averaging results.  相似文献   
16.
Nearly every cargo that is transported by ship is boxed in standardized containers. The land to ship and ship to land handling of containers is performed by container cranes. These cranes dominate the throughput of the containers in ports. The operators need to be well-trained and skilled because of the requirements of the task to load or unload the ships. During container handling, the crane-load system can be compared to a pendulum of rope length L and deflection f{\phi} . It is referred to as an underactuated system. Whenever the fixed point of the pendulum is displaced, the load starts oscillating. In the nonlinear dynamics literature, one finds the field of resonant coupling to transfer energy from actuated controllable modes to underactuated uncontrollable modes. This work presents a novel normal form approach in order to identify the mode coupling. The proposed method decomposes a nonlinear control system into controllable and uncontrollable subsystem. Only the normal form terms in the controllable subsystem are utilized to design a general controller. Simulation results are given to highlight the load oscillation suppression.  相似文献   
17.
Nonlinear Dynamics - In this paper, we combine tools from the study of chaotic dynamical systems with nonlinear non-Gaussian data assimilation algorithms to produce novel particle filtering...  相似文献   
18.
This paper uses results from the theory of reversible dynamical systems to examine the nonlinear stability of undamped follower force systems. The well-known dissipation-induced destabilization found in these systems is also examined and it is indicated how the postdestabilization dynamics can be determined using normal forms and an eigenvalue splitting criterion.  相似文献   
19.
20.
Summary. A phenomenon commonly encountered during machining operations is chatter. It manifests itself as a vibration between workpiece and cutting tool, leading to poor dimensional accuracy and surface finish of the workpiece and to premature failure of the cutting tool. A chatter suppression method that has received attention in recent years is the spindle speed variation method, whereby greater widths of cut are achieved by modulating the spindle speed continuously. By adapting existing mathematical techniques, a perturbative method is developed in this paper to obtain finite-dimensional equations in order to systematically study the mechanism of spindle speed variation for chatter suppression. The results indicate both modest increase of stability and complex nonlinear dynamics close to the new stability boundary. The method developed in this paper can readily be applied to any other system with time-delay characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号