首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28709篇
  免费   86篇
  国内免费   271篇
化学   10321篇
晶体学   261篇
力学   1382篇
综合类   12篇
数学   8997篇
物理学   8093篇
  2021年   23篇
  2018年   1189篇
  2017年   1450篇
  2016年   710篇
  2015年   549篇
  2014年   473篇
  2013年   639篇
  2012年   3108篇
  2011年   2291篇
  2010年   1791篇
  2009年   1532篇
  2008年   542篇
  2007年   587篇
  2006年   593篇
  2005年   4424篇
  2004年   3909篇
  2003年   2299篇
  2002年   474篇
  2001年   282篇
  2000年   88篇
  1999年   171篇
  1998年   107篇
  1997年   71篇
  1996年   44篇
  1995年   43篇
  1994年   42篇
  1992年   171篇
  1991年   153篇
  1990年   134篇
  1989年   106篇
  1988年   99篇
  1987年   56篇
  1986年   41篇
  1985年   36篇
  1984年   29篇
  1983年   28篇
  1979年   29篇
  1978年   25篇
  1976年   81篇
  1975年   37篇
  1974年   40篇
  1973年   50篇
  1972年   41篇
  1971年   25篇
  1970年   34篇
  1969年   37篇
  1968年   35篇
  1967年   30篇
  1966年   37篇
  1923年   24篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
New vapor-liquid equilibria (VLE) data at 323.15, 333.15, 343.15, and 353.15 K and pressures up to 112.9 bar are reported for the carbon dioxide + 2-methyl-2-propanol system. The experimental method used in this work was a static analytical method with liquid and vapor phases sampling using a rapid online sampler injector (ROLSI?) coupled to a gas chromatograph (GC) for analysis. Measured VLE data and literature data for carbon dioxide + 2-methyl-2-propanol system were modeled with the Soave-Redlich-Kwong (SRK) cubic equation of state with classical van der Waals (two-parameter conventional mixing rule, 2PCMR) mixing rules. A single set of interaction parameters that lead to a correct phase behavior was used in this work to model the new VLE data and critical points of the mixtures in a wide range of temperature and pressure. The SRK prediction results were compared to the new data measured in this study and to available literature data.
  相似文献   
992.
Quinine sulfate dihydrate (QNS), IUPAC name: (8S,9R)-6-methoxy-4-quinolenyl-5-vinyl-2-quinuclidinyl methanol sulfate dihydrate, was tested as corrosion inhibitor for carbon steel in 1.5 mol L?1 HCl solution using the potentiodynamic polarization and the electrochemical impedance spectroscopy (EIS) associated with UV-Vis spectrophotometry. The electrochemical results showed that, the inhibition efficiency (IE) increased with the increase in QNS concentration, reaching a maximum value of 93.35±0.25%. The polarization resistance (R p) followed the same trend, obtaining the highest value of 659.7 Ω cm2, while the corrosion current density (i corr) reached the lowest level of 195 µA cm?2. The action mechanism of QNS was proposed considering the ability of quinine (QN) to be adsorbed on the metal surface via the lone pairs of electrons from hydroxyl oxygen atom, and/or from quinoline and quinuclidinic nitrogens. The occurrence of the complexes between inhibitor and iron ions was considered an additional process, which may contribute to protective layer formation. The Temkin adsorption isotherm was found as the best fitting for the degree of surface coverage (θ) values. In order to elucidate the mechanism of protective layer formation, the free energy of adsorption (ΔG o ads) value was calculated. This indicates that the inhibitor acts by chemical adsorption on the steel surface.
  相似文献   
993.
Protein–protein interactions are of utmost importance to an understanding of biological phenomena since non-covalent and therefore reversible couplings between basic proteins leads to the formation of complex regulatory and adaptive molecular systems. Such systems are capable of maintaining their integrity and respond to external stimuli, processes intimately related to living organisms. These interactions, however, span a wide range of dissociation constants, from sub-nanomolar affinities in tight complexes to high-micromolar or even millimolar affinities in weak, transiently formed protein complexes. Herein, we demonstrate how novel NMR and EPR techniques can be used for the characterization of weak protein–protein (ligand) complexes. Applications to intrinsically disordered proteins and transiently formed protein complexes illustrate the potential of these novel techniques to study hitherto unobserved (and unobservable) higher-order structures of proteins.  相似文献   
994.
Monosaccharides and disaccharides are important dietary components, but if insufficiently metabolized by some population subgroups, they are also linked to disease patterns. Thus, the correct analytical identification, quantification, and labeling of these food components are crucial to inform and potentially protect consumers. Enzymatic assays and high-performance anion-exchange chromatography with pulsed amperometric detection are established methods for the quantification of monosaccharides and disaccharides that, however, require long measuring times (60–180 min). Accelerated methods for the identification and quantification of the nutritionally relevant monosaccharides and disaccharides d -glucose, d -galactose, d -fructose, sucrose, lactose, and maltose were therefore developed. To realize this goal, the NMR experiments HSQC (heteronuclear single quantum coherence) and acceleration by sharing adjacent polarization (ASAP)-HSQC were applied. Measurement times were reduced to 27 and 6 min, respectively, by optimizing the interscan delay and applying non-uniform sampling. The optimized methods were used to quantify d -glucose, d -galactose, d -fructose, sucrose, and lactose in various dairy products. Results of the HSQC and ASAP-HSQC methods are equivalent to the results of the reference methods in terms of both precision and accuracy, demonstrating that these methods can be used to correctly analyze nutritionally relevant monosaccharides and disaccharides in short times.  相似文献   
995.
We studied the formation of AuRh nanoalloys (between 20–150 atoms) in the gas phase by means of Molecular Dynamics (MD) calculations, exploring three possible formation processes: one-by-one growth, coalescence, and nanodroplets annealing. As a general trend, we recover a predominance of Rh@Au core-shell ordering over other chemical configurations. We identify new structural motifs with enhanced thermal stabilities. The physical features of those selected systems were studied at the Density Functional Theory (DFT) level, revealing profound correlations between the nanoalloys morphology and properties. Surprisingly, the arrangement of the inner Rh core seems to play a dominant role on nanoclusters’ physical features like the HOMO-LUMO gap and magnetic moment. Strong charge separations are recovered within the nanoalloys suggesting the existence of charge-transfer transitions.  相似文献   
996.
该文基于牛血清白蛋白模板金纳米簇(BSA@AuNCs)与羟基氧化钴(CoOOH)纳米片构建了一种激活型荧光纳米探针用于生物硫醇的检测。带负电的BSA@AuNCs能通过静电吸附作用组装到带正电的CoOOH纳米片表面,与此同时,BSA@AuNCs的荧光由于内滤效应(IFE)有效地被CoOOH纳米片猝灭,形成BSA@AuNCs-CoOOH纳米探针。当向纳米探针溶液加入生物硫醇(0.05~150 μmol/L)时,生物硫醇与纳米探针中的CoOOH纳米片发生氧化还原反应,CoOOH纳米片被降解生成Co2+,同时释放出BSA@AuNCs,BSA@AuNCs荧光信号恢复。结果表明,该纳米探针可以检测低浓度的生物硫醇,对生物硫醇(半胱氨酸、谷胱甘肽和高半胱氨酸)的检出限为30 nmol/L。相对于其他的氨基酸、金属离子及糖类化合物,该纳米探针对生物硫醇具有较高的选择性并成功应用于人血清样品中生物硫醇的检测。  相似文献   
997.
998.
999.
A Kondo-like effect, namely, the upturn of resistivity at low temperatures, is observed in perovskite manganite when nonmagnetic insulators are doped as secondary phase. In this paper, the low-temperature resistivity upturn effect has been argued to originate from interfacial magnetic phase reconstruction. Heisenberg spin lattices have been simulated using the Monte Carlo method to reveal phase competition around secondary phase boundary, namely, manganite-insulator boundary that behaves with a weak antiferromagnetic tendency. Moreover, the resistor network model based on double-exchange conductive mechanism reproduces the low-temperature resistivity upturn effect. Our work provides a reasonable physical mechanism to understand the novel transport behaviors in microstructures of correlated electron systems.  相似文献   
1000.
We develop the method of vector-fields to further study Dispersive Wave Equations. Radial vector fields are used to get a-priori estimates such as the Morawetz estimate on solutions of Dispersive Wave Equations. A key to such estimates is the repulsiveness or nontrapping conditions on the flow corresponding to the wave equation. Thus this method is limited to potential perturbations which are repulsive, that is the radial derivative pointing away from the origin. In this work, we generalize this method to include potentials which are repulsive relative to a line in space (in three or higher dimensions), among other cases. This method is based on constructing multi-centered vector fields as multipliers, cancellation lemmas and energy localization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号