首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonequilibrium nanoalloys are metastable solids obtained at the nanoscale under nonequilibrium conditions that allow the study of kinetically frozen atoms and the discovery of new physical and chemical properties. However, the stabilization of metastable phases in the nanometric size regime is challenging and the synthetic route should be easy and sustainable, for the nonequilibrium nanoalloys to be practically available. Here we report on the one-step laser ablation synthesis in solution (LASiS) of nonequilibrium Au−Co alloy nanoparticles (NPs) and their characterization on ensembles and at the single nanoparticle level. The NPs are obtained as a polycrystalline solid solution stable in air and water, although surface cobalt atoms undergo oxidation to Co(II). Since gold is a renowned plasmonic material and metallic cobalt is ferromagnetic at room temperature, these properties are both found in the NPs. Besides, surface conjugation with thiolated molecules is possible and it was exploited to obtain colloidally stable solutions in water. Taking advantage of these features, an array of magnetic-plasmonic dots was obtained and used for surface-enhanced Raman scattering experiments. Overall, this study confirms that LASiS is an effective method for the formation of kinetically stable nonequilibrium nanoalloys and shows that Au−Co alloy NPs are appealing magnetically responsive plasmonic building blocks for several nanotechnological applications.  相似文献   

2.
3.
In this article, we report the synthesis of "solid solution" and "core-shell" types of well-defined Co--Pt nanoalloys smaller than 10 nm. The formation of these alloys is driven by redox transmetalation reactions between the reagents without the need for any additional reductants. Also the reaction proceeds selectively as long as the redox potential between the two metals is favorable. The reaction between Co(2)(CO)(8) and Pt(hfac)(2) (hfac = hexafluoroacetylacetonate) results in the formation of "solid solution" type alloys such as CoPt(3) nanoparticles. On the other hand, the reaction of Co nanoparticles with Pt(hfac)(2) in solution results in "Co(core)Pt(shell)" type nanoalloys. Nanoparticles synthesized by both reactions are moderately monodispersed (sigma < 10%) without any further size selection processes. The composition of the alloys can also be tuned by adjusting the ratio of reactants. The magnetic and structural properties of the obtained nanoparticles and reaction byproducts are characterized by TEM, SQUID, UV/vis, IR, EDAX, and XRD.  相似文献   

4.
Oxygen evolution reaction (OER) is the most critical step in water splitting, still limiting the development of efficient alkaline water electrolyzers. Here we investigate the OER activity of Au–Fe nanoalloys obtained by laser-ablation synthesis in solution. This method allows a high amount of iron (up to 11 at %) to be incorporated into the gold lattice, which is not possible in Au–Fe alloys synthesized by other routes, due to thermodynamic constraints. The Au0.89Fe0.11 nanoalloys exhibit strongly enhanced OER in comparison to the individual pure metal nanoparticles, lowering the onset of OER and increasing up to 20 times the current density in alkaline aqueous solutions. Such a remarkable electrocatalytic activity is associated to nanoalloying, as demonstrated by comparative examples with physical mixtures of gold and iron nanoparticles. These results open attractive scenarios to the use of kinetically stable nanoalloys for catalysis and energy conversion.  相似文献   

5.
A theoretical investigation is presented of alloying platinum with titanium to form binary Pt-Ti nanoalloys as an alternative to the expensive pure platinum catalysts commonly used for Proton Exchange Membrane Fuel Cell cathode electrocatalysts. Density Functional Theory calculations are performed to investigate compositional effects on structural properties as well as Oxygen Reduction Reaction kinetics and poisoning effects. High symmetry A(32)-B(6) clusters are studied to investigate structural properties. From these structures binding energies of hydroxyl and carbon monoxide are studied on a range of sites on the surface of the clusters. Promising results are obtained suggesting that the bimetallic Pt-Ti nanoalloys may exhibit enhanced properties compared to pure platinum catalysts.  相似文献   

6.
We present a quantitative study of the catalytic activity of well-defined faceted gold-palladium nanoalloys which are immobilized on cationic spherical polyelectrolyte brushes. The spherical polyelectrolyte brush particles used as carriers for the nanoalloys consist of a solid polystyrene core onto which cationic polyelectrolyte chains of 2-aminoethyl methacrylate are attached. Au/Pd nanoalloy particles with sizes in the range from 1 to 3 nm have been generated which are homogeneously distributed on the surface of the spherical polyelectrolyte brushes. The reduction of 4-nitrophenol has been chosen as a well-controlled model reaction allowing us to determine the catalytic activity of the nanoalloys as a function of the Au/Pd composition. The adsorption behavior was studied by Langmuir-Hinshelwood kinetics. We find a pronounced maximum of the catalytic activity at 75 molar % Au. A comparison of gold, platinum, palladium and gold-palladium alloy nanoparticles is made in terms of Langmuir-Hinshelwood kinetics. Density functional calculations for Au/Pd clusters with up to 38 atoms show that the density of states at the Fermi level increases with increasing Pd content, and that the highest occupied orbitals are associated with Pd atoms. The calculations confirm that small changes in the atomic arrangement can lead to pronounced changes in the particles' electronic properties, indicating that the known importance of surface effects is further enhanced in nanoalloys.  相似文献   

7.
Alloy Pt-M (M = Co, Ni) nanocatalysts, supported on carbon Vulcan XC-72, were synthesized using the carbonyl chemical route. A high dispersion on such substrate was revealed by transmission electron microscopy (TEM). Alloy formation on the nanometre scale length was shown by high-resolution transmission microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDX) on a nanoparticle. The metal M in Pt-M nanoalloys segregates preferentially on the nanoparticles' surface, as determined by the hydrogen adsorption electrochemical reaction. An increased tolerance towards methanol of such nanoalloy materials was observed for the oxygen reduction reaction (ORR) in acid media. To better understand the structure and segregation phenomena of these nanoalloys, molecular dynamics (MD) with a self-optimized reactive force field was applied.  相似文献   

8.
CuPd (1/1) nanoalloys composed of disordered body-centered-cubic crystals (crystal size = 1.6 nm) were prepared by synchronous reduction of Cu and Pd precursor ions with NaBH(4). In situ XRD measurement revealed that Cu and Pd atoms in the CuPd nanoalloys are arranged into an ordered B2 structure under exposure to H(2) (5 kPa) at 373 K. Ordering of Cu and Pd atoms over a longer distance (up to 3.6 nm) was achieved by annealing the nanoalloys for a longer time under a H(2) atmosphere.  相似文献   

9.
Synthesis of well-defined atomically mixed alloy nanoparticles on desired substrates is an ultimate goal for their practical application. Herein we report a general approach for preparing atomically mixed AuPt, AuPd, PtPd, AuPtPd NAs(nanoalloys) through single-atom level manipulation. By utilizing the ubiquitous tendency of aggregation of single atoms into nanoparticles at elevated temperatures, we have synthesized nanoalloys on a solid solvent with CeO2 as a carrier and transition-metal single atoms as an intermediate state. The supported nanoalloys/CeO2 with ultra-low noble metal content (containing 0.2 wt % Au and 0.2 wt % Pt) exhibit enhanced catalytic performance towards complete CO oxidation at room temperature and remarkable thermostability. This work provides a general strategy for facile and rapid synthesis of well-defined atomically mixed nanoalloys that can be applied for a range of emerging techniques.  相似文献   

10.
Size‐controllable, high‐yield, island‐shaped RhPdPt trimetallic nanocrystals with sub‐2.0 nm islands have been successfully synthesized through a facile aqueous solution approach. The results of X‐ray diffraction (XRD), energy‐dispersive X‐ray (EDX) line scanning and elemental mapping analysis showed the as‐synthesized RhPdPt nanocrystals are alloy structures. These island‐shaped RhPdPt trimetallic nanoalloys showed a composition‐dependent electrocatalytic performance for ethanol oxidation in alkaline medium. Due to the special structure and intermetallic synergies, the Rh10Pd40Pt50 nanoalloys exhibited an enhanced catalytic activity and durability relative to island‐shaped Pd50Pt50 bimetallic nanoalloys and commercial Pt black. The peak current density for Rh10Pd40Pt50 nanoalloys was 1.81 and 1.38 times that for commercial Pt black and Pd50Pt50 nanoalloys, respectively. In addition, the peak potential on Rh10Pd40Pt50 nanoalloys decreased 42 mV relative to commercial Pt black and Pd50Pt50 nanoalloys.  相似文献   

11.
We have developed a simple solvothermal method by using solvent mixtures of ethylenediamine with ethanol and deionized water to produce the CuInSe2 nanoalloys. The phase structure, morphology, elemental composition and optical band gap (Eg) of synthesized the CuInSe2 nanoalloys were characterized by Raman spectroscopy, X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDS) and zeta potential particle sizer measurements. The factors affecting product purity in the mixed solvent are also discussed. The results showed that CuInSe2 nanoalloys with a chalcopyrite tetragonal structure were produced by adjusting the ratio of ethylenediamine to ethanol (1:2.33 by volume) and their corresponding energy band gap was found to be 1.27 eV. In addition, we prepared and coated the CuInSe2 ink on the Mo substrate by the doctor blade method to produce a compact thin film. The crystallinity and the morphology of these polycrystalline CuInSe2 films were characterized.  相似文献   

12.
Synthesis of well‐defined atomically mixed alloy nanoparticles on desired substrates is an ultimate goal for their practical application. Herein we report a general approach for preparing atomically mixed AuPt, AuPd, PtPd, AuPtPd NAs(nanoalloys) through single‐atom level manipulation. By utilizing the ubiquitous tendency of aggregation of single atoms into nanoparticles at elevated temperatures, we have synthesized nanoalloys on a solid solvent with CeO2 as a carrier and transition‐metal single atoms as an intermediate state. The supported nanoalloys/CeO2 with ultra‐low noble metal content (containing 0.2 wt % Au and 0.2 wt % Pt) exhibit enhanced catalytic performance towards complete CO oxidation at room temperature and remarkable thermostability. This work provides a general strategy for facile and rapid synthesis of well‐defined atomically mixed nanoalloys that can be applied for a range of emerging techniques.  相似文献   

13.
We locate the putative global minimum structures of Na(x)Cs(55-x) and Li(x)Cs(55-x) nanoalloys through combined empirical potential and density functional theory calculations, and compare them to the structures of 55-atom Li-Na and Na-K nanoalloys obtained in a recent paper [A. Aguado and J. M. Lo?pez, J. Chem. Phys. 133, 094302 (2010)]. Alkali nanoalloys are representative of isovalent metallic mixtures with a strong tendency towards core-shell segregation, and span a wide range of size mismatches. By comparing the four systems, we analyse how the size mismatch and composition affect the structures and relative stabilities of these mixtures, and identify useful generic trends. The Na-K system is found to possess a nearly optimal size mismatch for the formation of poly-icosahedral (pIh) structures with little strain. In systems with a larger size mismatch (Na-Cs and Li-Cs), frustration of the pIh packing induces for some compositions a reconstruction of the core, which adopts instead a decahedral packing. When the size mismatch is smaller than optimal (Li-Na), frustration leads to a partial amorphization of the structures. The excess energies are negative for all systems except for a few compositions, demonstrating that the four mixtures are reactive. Moreover, we find that Li-Cs and Li-Na mixtures are more reactive (i.e., they have more negative excess energies) than Na-K and Na-Cs mixtures, so the stability trends when comparing the different materials are exactly opposite to the trends observed in the bulk limit: the strongly non-reactive Li-alkali bulk mixtures become the most reactive ones at the nanoscale. For each material, we identify the magic composition x(m) which minimizes the excess energy. x(m) is found to increase with the size mismatch due to steric crowding effects, and for Li(x)Cs(55-x) the most stable cluster has almost equiatomic composition. We advance a simple geometric packing rule that suffices to systematize all the observed trends in systems with large size mismatch (Na-K, Na-Cs, and Li-Cs). As the size mismatch is reduced, however, electron shell effects become more and more important and contribute significantly to the stability of the Li-Na system.  相似文献   

14.
The determination of optimal chemical ordering in nanoalloys, i.e. of the most stable pattern in which atoms are arranged in bi- or multicomponent metallic clusters, is quite complex due to the enormous number of different possible configurations. This problem is very difficult to tackle by first-principle methods except for very small systems. On the other hand, the treatment at the atomistic potential level is complicated in many cases (such as AgAu) by charge transfer effects between atoms of different species in different coordination environments. Here an empirical atomistic model is developed to take into account such effects. The model is used to determine the optimal chemical ordering in AgAu nanoalloys. Charge transfer between atoms is taken into account by a modification of the charge equilibration method of Goddard and Rappé [J. Phys. Chem., 1991, 95, 3358], in which a coordination-dependent electronegativity and hardness are introduced. The model is applied to the determination of chemical ordering in AgAu nanoalloys. It is shown that the inclusion of charge transfer effects is important for improving the agreement of the atomistic model with density-functional calculations, leading to the determination of lower-energy chemical ordering patterns.  相似文献   

15.
High-quality alloyed Zn(x)Cd(1-x)S nanocrystals have been synthesized at high temperature by the reaction of a mixture of CdO- and ZnO-oleic acid complexes with sulfur in the noncoordinating solvent octadecene system. A series of monodisperse wurtzite Zn(x)Cd(1-x)S (x = 0.10, 0.25, 0.36, 0.53) nanocrystals were obtained with corresponding particle radii of 4.0, 3.2, 2.9, and 2.4 nm, respectively. With the increase of the Zn content, their photoluminescence (PL) spectra blue-shift systematically across the visible spectrum from 474 to 391 nm, indicating the formation of the alloyed nanocrystals. The alloy structure is also supported by the characteristic X-ray diffraction (XRD) patterns of these nanoalloys with different Zn mole fractions, in which their diffraction peaks systematically shift to larger angles as the Zn content increases. The lattice parameter c measured from XRD patterns decreases linearly with the increase of Zn content. This trend is consistent with Vegard's law, which further confirms the formation of homogeneous nanoalloys. These monodisperse wurtzite Zn(x)Cd(1-x)S nanoalloys possess superior optical properties with PL quantum yields of 25-50%, especially the extremely narrow room-temperature emission spectral width (full width at half-maximum, fwhm) of 14-18 nm. The obtained narrow spectral width stems from the uniform size and shape distribution, the high composition homogeneity, and the relatively large particle radius, which is close to or somewhat larger than the exciton Bohr radius. The process by which the initial structure with random spatial composition fluctuations turns into an alloy (solid solution) with homogeneous composition is clearly demonstrated by the temporal evolution of the PL spectra during the annealing progress.  相似文献   

16.
By using laser-induced heating, we prepared Au-Ag nanoalloys via three different procedures: (i) mixture of Au nanoparticles and Ag(+) ions irradiated by a 532 nm laser, (ii) mixture of Au and Ag nanoparticles irradiated by a 532 nm laser, and (iii) mixture of Au and Ag nanoparticles irradiated by a 355 nm laser. Procedure i is advantageous for the production of spherical alloy nanoparticles; in procedures ii and iii, nanoalloys with a sintered structure have been obtained. The morphology of the obtained nanoalloys depends not only on the laser wavelength but also on the concentration of nanoparticles in the initial mixture. When the total concentration of Ag and Au nanoparticles in the mixture is increased, large-scale interlinked networks have been observed upon laser irradiation. It is expected that this selective heating strategy can be extended to prepare other bi- or multi-metallic nanoalloys.  相似文献   

17.
We have studied how the formation of molecular hydrogen on silicates at low temperature is influenced by surface morphology. At low temperature (<30 K), the formation of molecular hydrogen occurs chiefly through weak physical adsorption processes. Morphology then plays a role in facilitating or hindering the formation of molecular hydrogen. We studied the formation of molecular hydrogen on a single crystal forsterite and on thin films of amorphous silicate of general composition (Fe(x)Mg((x-1)))(2)SiO(4), 0 < x < 1. The samples were studied ex situ by Atom Force Microscopy (AFM), and in situ using Thermal Programmed Desorption (TPD). The data were analysed using a rate equation model. The main outcome of the experiments is that TPD features of HD desorbing from an amorphous silicate after its formation are much wider than the ones from a single crystal; correspondingly typical energy barriers for diffusion and desorption of H, H(2) are larger as well. The results of our model can be used in chemical evolution codes of space environments, where both amorphous and crystalline silicates have been detected.  相似文献   

18.
Body-centered-cubic type CuPd nanoalloys were synthesized by a chemical reduction method. Photocatalytic hydrogen evolution and nitrate reduction were simultaneously examined over CuPd nanoalloys deposited on TiO(2) (CuPd/TiO(2)). The efficiency of hydrogen evolution over CuPd/TiO(2) was better than that over Pd/TiO(2). As for nitrate reduction, ammonia was selectively (78%) produced with hydrogen generated photocatalytically over CuPd/TiO(2). The continuous generation of nascent hydrogen atoms on the surface of the CuPd nanoalloy, where Cu and Pd are homogeneously mixed, led to the high selectivity for ammonia.  相似文献   

19.
We consider the results of original research on design and study of multicomponent catalytic nanostructures for the major current-generating reactions in fuel cells. The activity and selectivity level of the synthesized catalysts (nanoalloys) determines the efficiency of conversion of chemical energy to electrical energy in the present stage of development of electrochemical power generation.  相似文献   

20.
Pt-based alloy nanoporous structures have attracted a lot of attention because of their high activity and stability toward alcohol oxidation reactions. Especially, Pt alloying with Earth-abundant metal can lower the cost of catalyst. Here, we introduce a one-pot approach to synthesize bimetallic PtCu and Ni-doped PtCu nanoalloy with porous structure. The as-synthesized Ni-doped Pt60Ni3Cu37 nanoalloys exhibit excellent electrocatalytic properties toward methanol oxidation in acidic medium. The mass activity of the as-synthesized Pt60Ni3Cu37 nanoalloys is 3.6 times and 5.3 times that of Pt55Cu45 nanoalloys and commercial Pt black for methanol oxidation in 0.2?M methanol solution. Besides, the stability of the as-synthesized Pt60Ni3Cu37 nanoalloys was much better than Pt55Cu45 nanoalloys and commercial Pt black. After 3600?s chronoamperometry test, the remaining values of the Pt60Ni3Cu37 nanoalloys are 3.7 times and 11.0 times that of Pt55Cu45 nanoalloys and commercial Pt black. And it is the first time to report that small amount of Ni dopants can boost the activity and stability of PtNiCu alloys toward methanol oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号