首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   5篇
  国内免费   3篇
化学   93篇
晶体学   6篇
数学   32篇
物理学   21篇
  2023年   3篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   7篇
  2018年   1篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   10篇
  2013年   11篇
  2012年   9篇
  2011年   12篇
  2010年   3篇
  2009年   9篇
  2008年   7篇
  2007年   8篇
  2006年   12篇
  2005年   9篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1994年   3篇
  1993年   3篇
排序方式: 共有152条查询结果,搜索用时 125 毫秒
101.
Sialic acids (Sias) are fascinating nine‐carbon monosaccharides that are primarily found on the terminus of the oligosaccharide chains of glycoproteins and glycolipids on cell surfaces. These Sias undergo a variety of structural modifications at their hydroxy and amine positions, thereby resulting in structural diversity and, hence, coordinating a variety of biological processes. However, deciphering the structural functions of such interactions is highly challenging, because the monovalent binding of Sias is extremely weak. Over the last decade, several multivalent Sia ligands have been synthesized to modulate their binding affinity with proteins/lectins. In this Minireview, we highlight recent developments in the synthesis of multivalent Sia probes and their potential applications. We will discuss four key multivalent families, that is, polymers, dendrimers, liposomes, and nanoparticles, and will emphasize the major parameters that are essential for the specific interactions of these molecules with proteins in biological systems.  相似文献   
102.
Recently, Fletcher and Leyffer proposed using filter methods instead of a merit function to control steplengths in a sequential quadratic programming algorithm. In this paper, we analyze possible ways to implement a filter-based approach in an interior-point algorithm. Extensive numerical testing shows that such an approach is more efficient than using a merit function alone.  相似文献   
103.
This study aimed to review recent chromatographic methods for quantifying and identifying components released from dental composites. Resin-based dental restorative materials are extensively used in dentistry today. Although composite materials are known to be highly stable structures, they are susceptible to degradation because of the incomplete polymerization. Several components may be released from resin composite restorations into the oral environment. The elution of components from composite resins may affect the biocompatibility of the restorations. Therefore, it is essential to understand the nature and quantity of substances that are segregated into the oral cavity.  相似文献   
104.
The crystal and molecular structure of 2-methyl-4-(4-methoxyphenylazo)phenol have been determined by X-ray single crystal diffraction technique. The compound crystallizes in the monoclinic space group P21/c with a=9.7763(8) Å, b=11.3966(8) Å, c=11.9531(8) Å and β=108.752(6)°. In addition to the molecular geometry from X-ray experiment, its optimized molecular structure has been obtained with the aid of PM3 semiempirical quantum mechanical method, and then the corresponding geometric parameters were compared with those of X-ray crystallography. To determine conformational flexibility and crystal packing effects on the molecules, molecular energy profile of the title compound was obtained with respect to two selected degrees of torsional freedom, which were varied from ?180° to +180° in steps of 10°. Crystal structure of the title compound is a fibroid structure constructed by C–H···O and O–H···N type intermolecular hydrogen bonds. The most favorable conformer of the title compound has been determined by the crystal packing effects and there is no steric hindrance during rotation around the selected torsion angles.  相似文献   
105.
We have investigated the pairs of rotational isomers for six 3-(o-aryl)-5-methyl-rhodanines (Z = H, F, Cl, Br, OH, and CH3) using NMR spectroscopy and density functional theory (DFT) calculations. Electron density topological and NBO analysis has demonstrated the importance of non-covalent interactions, characterised by (3, -1) bond critical points (BCPs), between the oxygen and sulfur atoms on the thiazolidine ring with the aryl substitutents in stabilizing the transition states. The energetic activation barriers to rotation have also been determined using computational results; rotational barriers for 3-(o-chlorophenyl)-5-methyl-rhodanine (3S) and 3-(o-tolyl)-5-methyl-rhodanine (6S) were determined experimentally based on NMR separation of the diastereoisomeric pairs, and the first-order rate constants used to derive the value of the rotational barrier from the Eyring equation.  相似文献   
106.
The synthesis of 3-(2-methoxy-1,1-dimethylethyl)pyrazole, pz*H is described together with its reactions with the borohydrides MBH(4), where M = Li, Na, and K, under melt conditions. At 180 degrees C, this procedure leads to a mixture of products for M = Li, and at higher temperatures, a derivative LiTp'pz*H, 1, is isolated, wherein a B-H bond and a methyl group have been eliminated and a B-O bond has been formed. For M = Na, the reaction proceeds to give the tris-pyrazolylborate derivative NaTp*, 2, but at higher temperatures the tetra-pyrazolylborate complex NaB(pz*)(4), 3, is obtained. The reactions involving KBH4 and pz*H yield the dinuclear complex K(2)(Tp*)(2)pz*H, 4. The reaction between NaTp* and TlOAc in CH(2)Cl(2) at room temperature leads to the formation of TlTp*, 5, along with NaOAc. Thallium 5 reacts with methyllithium in diethylether to give LiTp*, 6, and thallium metal, and, similarly, 5 and KH react in tetrahydrofuran to give KTp*, 7 and Tl(0). 1-7 have been characterized by elemental analysis, NMR spectroscopy, and by single-crystal X-ray studies, the latter of which reveal the versatile modes of binding for this new ligand bearing hemilabile ether appendages.  相似文献   
107.
We compared cryopreservation of mammalian neural stem cells (NSCs) cultured as neurospheres by slow-cooling (1 C/min) in 10% (v/v) DMSO and cryopreservation by immersion into liquid nitrogen in ethylene glycol (EG)-sucrose solutions that support vitrification (40% (v/v) EG, 0.6 M sucrose) or that do not (37% v/v) EG, 0.6 M sucrose and 30% (v/v) EG, 0.6 M sucrose); the concentration of penetrating cryoprotectant in the last two solutions was lowered with the intention to reduce their toxicity towards NSCs. To protect against contamination a straw-in-straw technique was employed. Vitrification offered the best combination of preservation of structural integrity of neurospheres, cell viability (>96%), multipotency and karyotype. Rapid cooling in 37% (v/v) EG, 0.6 M sucrose afforded good viability but did not preserve structural integrity. Rapid cooling in 30% (v/v) EG, 0.6 M sucrose additionally reduced cell viability to 77%. Slow-cooling reduced cell viability to 65% and damaged the neurospheres. This study suggests that, in contrast to freezing, vitrification has immense potential for the cryopreservation of stem cells cultured as neurospheres or in other structured cultures.  相似文献   
108.
2,6-Bis(hydroxymethyl)-4-methyl phenol and 1,4-bis(hydroxymethyl) benzene have been used as crosslinkers in sulphonated poly (ether ether ketone) (SPEEK DS 65%, IEC 1.84 mequiv./g) for the preparation of proton exchange membranes (PEMs). Crosslinking of SPEEK has been achieved by thermally activated bridging of the polymer chain with the hydroxymethyl group of crosslinker through condensation reaction with sulphonic acid group. The physico-chemical properties of uncrosslinked and crosslinked membrane were evaluated in terms of ion exchange capacity (IEC), water uptake, ionic conductivity and mechanical properties. The crosslinked membrane showed controlled swelling, ionic conductivity of 25–50 mS/cm at 80 °C and good mechanical properties. The chemical stability of the crosslinked membranes was studied by Fenton's test. The % loss in weight and changes in physico-chemical properties of the treated membranes were determined.  相似文献   
109.
Physical structures of aqueous cellulose nanocrystal (CNC) suspensions in anionic polyelectrolyte carboxymethyl cellulose (CMC) and non-ionic poly(ethylene oxide) (PEO) were investigated by studying their cross polarized, polarized optical microscope (POM) images and dynamic light scattering, zeta potential, 1H spin–lattice relaxation nuclear magnetic resonance (NMR) data. The presence of anionic CMC and nonionic PEO in CNC suspensions led to two different kind of interactions. Semi-dilute CNC suspensions showed first gel-like behavior then phase separation by adding only semi-dilute un-entangled CMC polymer solutions, whereas the addition of PEO didn’t cause any significant change. POM images showed the phase transitions of CNC suspensions in the presence of CMC solutions from the isotropic state to nematic and chiral nematic phases. Dynamic light scattering, zeta potential and 1H spin–lattice relaxation NMR data presented further arguments to explain polymer-CNC interactions in CMC and PEO solutions. 1H NMR solvent relaxation technique determined the adsorption and depletion interactions between polymers and CNC. The minima in spin–spin specific relaxation rate constant showed the depletion of CNC nanoparticles in CMC. It is believed that the depletion flocculation was the case for the effects of CMC polymer chains in CNC suspensions. PEO was adsorbed on CNC surfaces and caused only weak depletion interactions due to the presence of soft particles.  相似文献   
110.
Journal of Thermal Analysis and Calorimetry - Thermodynamic properties and glass transition temperature (Tg) of heat pump dried scallop adductors with (SA-C) and without (SA) sodium alginate...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号