首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   1篇
  国内免费   1篇
化学   134篇
晶体学   1篇
力学   2篇
数学   30篇
物理学   38篇
  2021年   4篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   11篇
  2012年   2篇
  2011年   12篇
  2010年   5篇
  2009年   5篇
  2008年   21篇
  2007年   22篇
  2006年   10篇
  2005年   11篇
  2004年   9篇
  2003年   2篇
  2002年   7篇
  2001年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1985年   3篇
  1984年   2篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1973年   2篇
  1968年   1篇
  1956年   1篇
  1940年   2篇
  1938年   1篇
  1933年   2篇
  1928年   2篇
  1911年   1篇
  1910年   1篇
  1909年   1篇
  1903年   1篇
  1900年   1篇
  1894年   3篇
  1891年   1篇
  1890年   1篇
  1888年   2篇
  1887年   1篇
  1884年   1篇
  1883年   1篇
  1880年   2篇
排序方式: 共有205条查询结果,搜索用时 109 毫秒
91.
We have studied the assembly of 3-D colloidal crystals from binary mixtures of colloidal microspheres and highly charged nanoparticles on flat and epitaxially patterned substrates created by focused ion beam milling. The microspheres were settled onto these substrates from dilute binary mixtures. Laser scanning confocal microscopy was used to directly observe microsphere structural evolution during sedimentation, nanoparticle gelation, and subsequent drying. After microsphere settling, the nanoparticle solution surrounding the colloidal crystal was gelled in situ by introducing ammonia vapor, which increased the pH and enabled drying with minimal microsphere rearrangement. By infilling the dried colloidal crystals with an index-matched fluorescent dye solution, we generated full 3-D reconstructions of their structure including defects as a function of initial suspension composition and pitch of the patterned features. Through proper control over these important parameters, 3-D colloidal crystals were created with low defect densities suitable for use as templates for photonic crystals and photonic band gap materials.  相似文献   
92.
Recent advances in optical microscopy, such as total internal reflection and confocal scanning laser techniques, now permit the direct three-dimensional tracking of large numbers of colloidal particles both near and far from interfaces. A novel application of this technology, currently being developed by one of the authors under the name of diffusing colloidal probe microscopy (DCPM), is to use colloidal particles as probes of the energetic characteristics of a surface. A major theoretical challenge in implementing DCPM is to obtain the potential energy of a single particle in the external field created by the surface, from the measured particle trajectories in a dense colloidal system. In this paper we develop an approach based on an inversion of density-functional theory (DFT), where we calculate the single-particle-surface potential from the experimentally measured equilibrium density profile in a nondilute colloidal fluid. The underlying DFT formulation is based on the recent work of Zhou and Ruckenstein [Zhou and Ruckenstein, J. Chem. Phys. 112, 8079 (2000)]. For model hard-sphere and Lennard-Jones systems, using Monte Carlo simulation to provide the "experimental" density profiles, we found that the inversion procedure reproduces the true particle-surface-potential energy to an accuracy within typical DCPM experimental limitations (approximately 0.1 kT) at low to moderate colloidal densities. The choice of DFT closures also significantly affects the accuracy.  相似文献   
93.
This work involves the development of a novel technique that integrates total internal reflection and video microscopy methods to simultaneously measure single particle and ensemble average particle-surface interactions. For the 2 mum silica colloids and glass coverslip used in this study, particle size polydispersity is found to be a dominant factor in determining the distribution of single particle profiles about ensemble average profiles. In conjunction with this observation, chemical and physical nonuniformity are not evident in any of our measurements even with sensitivity to interactions on the order of kT. One advantage of using ensemble averaging in conjunction with time averaging is the ability to dramatically decrease the time required to measure average particle-wall interactions which scales inversely with interfacial particle concentration. A number of experimental issues are addressed in the development of this technique including (1) combining single particle distribution functions, (2) statistical sampling of distribution functions using both time and ensemble averaging, and (3) correcting overlapping scattering signals between adjacent particles. The capabilities of the ensemble averaging technique are also demonstrated to provide unique measurements of particle-surface interactions in metastable systems by selecting only height excursions of levitated particles when calculating potentials. Ultimately, this new technique provides several important advantages over single particle measurements, which provides a foundation for measuring interactions in increasingly complex interfacial systems.  相似文献   
94.

Background  

Functional immunoglobulin and T cell receptor genes are produced in developing lymphocytes by V(D)J recombination. The initial site-specific DNA cleavage steps in this process are catalyzed by the V(D)J recombinase, consisting of RAG1 and RAG2, which is directed to appropriate DNA cleavage sites by recognition of the conserved recombination signal sequence (RSS). RAG1 contains both the active site and the RSS binding domains, although RAG2 is also required for DNA cleavage activity. An understanding of the physicochemical properties of the RAG proteins, their association, and their interaction with the RSS is not yet well developed.  相似文献   
95.
During studies directed towards the discovery of nitrile hydrolysing enzymes from thermophiles, vanillin aldoxime was incubated with the thermophilic organism, Geobacillus sp. DDS012 isolated from Italian rye grass (Lolium multiflorum) silage. The predominant product was a dihydro-dimer, which could only be characterised by LC-MS. This was initially imagined to be the product of cycloaddition of vanillin aldoxime with the corresponding nitrile oxide, but preparation of the supposed adduct and model studies excluded this possibility. The rate constant for the second order dimerisation of 4-O-acetyl vanillin nitrile oxide was measured (1.21 x 10(-4) M(-1) s(-1), 0.413 M, 25 degrees C) and the (13)C-NMR signal for the nitrile oxide carbon was observed (delta(C) 34.4, br. t (1)J(13)C,(14)N circa 50 Hz). Treatment of vanillin aldoxime with potassium persulfate and iron sulfate gave material with the same LC-MS properties as the natural product, which is therefore identified as 5,5'-dehydro-di-(vanillin aldoxime) 1d formed by phenolic oxidative coupling.  相似文献   
96.
Electrostatically confined nanoparticle interactions and dynamics   总被引:1,自引:0,他引:1  
We report integrated evanescent wave and video microscopy measurements of three-dimensional trajectories of 50, 100, and 250 nm gold nanoparticles electrostatically confined between parallel planar glass surfaces separated by 350 and 600 nm silica colloid spacers. Equilibrium analyses of single and ensemble particle height distributions normal to the confining walls produce net electrostatic potentials in excellent agreement with theoretical predictions. Dynamic analyses indicate lateral particle diffusion coefficients approximately 30-50% smaller than expected from predictions including the effects of the equilibrium particle distribution within the gap and multibody hydrodynamic interactions with the confining walls. Consistent analyses of equilibrium and dynamic information in each measurement do not indicate any roles for particle heating or hydrodynamic slip at the particle or wall surfaces, which would both increase diffusivities. Instead, lower than expected diffusivities are speculated to arise from electroviscous effects enhanced by the relative extent (kappaa approximately 1-3) and overlap (kappah approximately 2-4) of electrostatic double layers on the particle and wall surfaces. These results demonstrate direct, quantitative measurements and a consistent interpretation of metal nanoparticle electrostatic interactions and dynamics in a confined geometry, which provides a basis for future similar measurements involving other colloidal forces and specific biomolecular interactions.  相似文献   
97.
We demonstrate an approach using temperature-dependent hydrogel depletants to thermoreversibly tune colloidal attraction and interfacial colloidal crystallization. Total internal reflection and video microscopy are used to measure temperature-dependent depletion potentials between approximately 2 microm silica colloids and surfaces as mediated by approximately 0.2 microm poly-N-isopropylacrylamide (PNIPAM) hydrogel particles. Measured depletion potentials are modeled using the Asakura-Oosawa theory while treating PNIPAM depletants as swellable hard spheres. Monte Carlo simulations using the measured potentials predict reversible, quasi-2D crystallization and melting at approximately 27 degrees C in quantitative agreement with video microscopy images of measured microstructures (i.e., radial distribution functions) over the temperature range of interest (20-29 degrees C). Additional measurements of short-time self-diffusivities display excellent agreement with predicted diffusivities by considering multibody hydrodynamic interactions and using a swellable hard sphere model for the PNIPAM solution viscosity. Our findings demonstrate the ability to quantitatively measure, model, and manipulate kT-scale depletion attraction and phase behavior as a means of formally engineering interfacial colloidal crystallization.  相似文献   
98.
Three new families of trimetallic nitride template endohedral metallofullerenes (TNT EMFs), based on cerium, praseodymium, and neodymium clusters, were synthesized by vaporizing packed graphite rods in a conventional Kr?tschmer-Huffman arc reactor. Each of these families of metallofullerenes was identified and characterized by mass spectroscopy, HPLC, UV/Vis-NIR spectroscopy, and cyclic voltammetry. The mass spectra and HPLC chromatograms show that these larger metallic clusters are preferentially encapsulated by a C(88) cage. When the size of the cluster is increased, the C(96) cage is progressively favored over the predominant C(88) cage. It is also observed that the smaller cages (C(80)-C(86)) almost disappear on going from neodymium to cerium endohedral metallofullerenes. The UV/Vis-NIR spectra and cyclic voltammograms confirm the low HOMO-LUMO gap and reversible electrochemistry of these M(3)N@C(88) metallofullerenes.  相似文献   
99.
We report an efficient method for the preparation and purification of the Ih and the D5h isomers of Tm3N@C80. Following preparation in a Kratschmer-Huffman electric-arc generator, the Tm3N@C80 isomers were obtained by a chemical separation process followed by a one-stage isomer selective chromatographic high-performance liquid chromatography (HPLC) separation (pyrenyl, 5PYE column). The HPLC chromatographic retention behavior on a pentabromobenzyl (5PBB) column suggests a charge transfer of approximately 6 electrons; [M3N] 6+@C80(6-) and the chromatographic retention mechanisms of the Ih and the D5h isomers of Tm3N@C80 on both 5PBB and 5PYE columns are discussed. Single-crystal X-ray diffraction data demonstrate that the Tm3N cluster has a planar structure but represents a tight fit for trapping the Tm3N cluster inside the I h - and the D 5h -C 80 cages. Specifically, the Tm atoms punch out the cage carbon atoms adjacent to them. The "punched out" effect can be demonstrated by cage radii and pyramidal angles at cage carbon atoms near the Tm atoms. The magnetic susceptibility (chiT) for Tm3N@ Ih -C80 was found to exhibit Curie-Weiss behavior with C = 23.4 emu.K/mol, which is consistent with the calculated value for three uncoupled Tm3+ ions by considering the spin and orbital contributions with no quenching of the orbital angular momentum ( L = 5, S = 1, and J = 6; Ccalcd = 23.3 emu.K/mol). The electrochemical measurements demonstrate that both the Ih and the D5h isomers of Tm3N@C80 have a large electrochemical gap.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号