首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   842篇
  免费   45篇
  国内免费   11篇
化学   542篇
晶体学   7篇
力学   31篇
数学   185篇
物理学   133篇
  2023年   10篇
  2021年   14篇
  2020年   16篇
  2019年   27篇
  2018年   14篇
  2017年   9篇
  2016年   28篇
  2015年   17篇
  2014年   40篇
  2013年   41篇
  2012年   35篇
  2011年   36篇
  2010年   48篇
  2009年   37篇
  2008年   61篇
  2007年   32篇
  2006年   46篇
  2005年   37篇
  2004年   33篇
  2003年   24篇
  2002年   22篇
  2001年   11篇
  2000年   16篇
  1999年   7篇
  1998年   20篇
  1997年   14篇
  1996年   11篇
  1995年   4篇
  1994年   7篇
  1993年   14篇
  1992年   9篇
  1991年   4篇
  1989年   4篇
  1988年   5篇
  1987年   10篇
  1985年   9篇
  1984年   11篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1980年   6篇
  1979年   6篇
  1978年   9篇
  1977年   7篇
  1976年   9篇
  1975年   7篇
  1965年   4篇
  1964年   4篇
  1962年   4篇
  1935年   3篇
排序方式: 共有898条查询结果,搜索用时 328 毫秒
41.
Pulsed EPR dipolar spectroscopy (PDS) offers several methods for measuring dipolar coupling and thus the distance between electron-spin centers. To date, PDS measurements to metal centers were limited to ions that adhere to the high-field approximation. Here, the PDS methodology is extended to cases where the high-field approximation breaks down on the example of the high-spin Fe3+/nitroxide spin-pair. First, the theory developed by Maryasov et al. (Appl. Magn. Reson. 2006 , 30, 683–702) was adapted to derive equations for the dipolar coupling constant, which revealed that the dipolar spectrum does not only depend on the length and orientation of the interspin distance vector with respect to the applied magnetic field but also on its orientation to the effective g-tensor of the Fe3+ ion. Then, it is shown on a model system and a heme protein that a PDS method called relaxation-induced dipolar modulation enhancement (RIDME) is well-suited to measuring such spectra and that the experimentally obtained dipolar spectra are in full agreement with the derived equations. Finally, a RIDME data analysis procedure was developed, which facilitates the determination of distance and angular distributions from the RIDME data. Thus, this study enables the application of PDS to for example, the highly relevant class of high-spin Fe3+ heme proteins.  相似文献   
42.
In this paper, we show that all Coleman automorphisms of a finite group with self-central minimal non-trivial characteristic subgroup are inner; therefore the normalizer property holds for these groups. Using our methods we show that the holomorph and wreath product of finite simple groups, among others, have no non-inner Coleman automorphisms. As a further application of our theorems, we provide partial answers to questions raised by M. Hertweck and W. Kimmerle. Furthermore, we characterize the Coleman automorphisms of extensions of a finite nilpotent group by a cyclic p-group. Finally, we note that class-preserving Coleman automorphisms of p-power order of some nilpotent-by-nilpotent groups are inner, extending a result by J. Hai and J. Ge, where p is a prime number.  相似文献   
43.
44.
45.
Using direct-write atom lithography, Fe nanolines are deposited with a pitch of 186 nm, a full width at half maximum (FWHM) of 50 nm, and a height of up to 6 nm. These values are achieved by relying on geometrical collimation of the atomic beam, thus without using laser collimation techniques. This opens the way for applying direct-write atom lithography to a wide variety of elements.  相似文献   
46.
47.
Formation, crystal structure, polymorphism, and transition between polymorphs are reported for M(thd)3, (M = Al, Cr, Mn, Fe, Co, Ga, and In) [(thd) = anion of H(thd) = C11H20O2 = 2, 2, 6, 6‐tetramethylheptane‐3, 5‐dione]. Fresh crystal‐structure data are provided for monoclinic polymorphs of Al(thd)3, Ga(thd)3, and In(thd)3. Apart from adjustment of the M–Ok bond length, the structural characteristics of M(thd)3 complexes remain essentially unaffected by change of M. Analysis of the M–Ok, Ok–Ck, and Ck–Ck distances support the notion that the M–Ok–Ck–Ck–Ck–Ok– ring forms a heterocyclic unit with σ and π contributions to the bonds. Tentative assessments according to the bond‐valence or bond‐order scheme suggest that the strengths of the σ bonds are approximately equal for the M–Ok, Ok–Ck, and Ck–Ck bonds, whereas the π component of the M–Ok bonds is small compared with those for the Ok–Ck, and Ck–Ck bonds. The contours of a pattern for the occurrence of M(thd)3 polymorphs suggest that polymorphs with structures of orthorhombic or higher symmetry are favored on crystallization from the vapor phase (viz. sublimation). Monoclinic polymorphs prefer crystallization from solution at temperatures closer to ambient. Each of the M(thd)3 complexes subject to this study exhibits three or more polymorphs (further variants are likely to emerge consequent on systematic exploration of the crystallization conditions). High‐temperature powder X‐ray diffraction shows that the monoclinic polymorphs convert irreversibly to the corresponding rotational disordered orthorhombic variant above some 100–150 °C (depending on M). The orthorhombic variant is in turn transformed into polymorphs of tetragonal and cubic symmetry before entering the molten state. These findings are discussed in light of the current conceptions of rotational disorder in molecular crystals.  相似文献   
48.
49.
Cooperative effects in the binding of two or more substrates to different binding sites of a receptor that are a result of a conformational change caused by the binding of the first substrate—also referred to as the effector—are called allosteric effects. In biological systems, allosteric regulation is a widely used mechanism to control the function of proteins and enzymes in cellular metabolism. Inspired by this a lot of efforts have been made in supramolecular chemistry to implement this concept into artificial systems to control functions as molecular recognition, signal amplification, or even reactivity and catalysis. This review gives an up‐to‐date overview over the different approaches that have been reported ever since the first examples from the late 1970s/early 1980s. It covers both homo‐ and heterotropic examples and is divided according to the nature of the effector—cationic, anionic, or neutral—effectors and systems that use combinations of those.  相似文献   
50.
Linked polymer solution (LPS) is nano-size particles made of hydrolyzed polyacrylamide (HPAM) cross-linked with aluminum citrate. The propagation of LPS has been compared to non-cross-linked polymers at low brine salinity condition. The possible differences in properties and potentials for oil recovery have been investigated using water-wet and intermediate-wet cores. The target oil for polymer flooding (PF) is assumed to be the portion of the reservoir that has been bypassed by water during waterflooding and not the residual oil saturation in flooded zones. Our recent studies have shown that a positive synergy can be obtained by combining low salinity and PF. It has been claimed in the literature that cross-linking polymer such as colloidal dispersion gels (colloidal dispersion gels (CDG), micron-size aggregates) or LPS (nano-size particles) would extend the application of polymers to also include change in residual oil saturation. The results of this study indicated higher pressure buildup when low salinity LPS was propagated through brine saturated cores compared to low salinity polymer solution. The pressure buildup was even stronger for high salinity LPS injection. In two phase flow experiments, both polymer and LPS under low salinity condition, showed approximately similar propagation and oil recovery potential when injected into water-wet and intermediate-wet cores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号