首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1797篇
  免费   53篇
  国内免费   10篇
化学   1067篇
晶体学   14篇
力学   44篇
数学   430篇
物理学   305篇
  2020年   16篇
  2019年   18篇
  2018年   12篇
  2017年   16篇
  2016年   32篇
  2015年   32篇
  2014年   32篇
  2013年   93篇
  2012年   79篇
  2011年   94篇
  2010年   53篇
  2009年   45篇
  2008年   84篇
  2007年   81篇
  2006年   97篇
  2005年   93篇
  2004年   65篇
  2003年   66篇
  2002年   84篇
  2001年   20篇
  2000年   32篇
  1999年   26篇
  1998年   28篇
  1997年   30篇
  1996年   27篇
  1995年   15篇
  1994年   31篇
  1993年   27篇
  1992年   21篇
  1991年   22篇
  1990年   18篇
  1989年   16篇
  1988年   12篇
  1987年   17篇
  1986年   18篇
  1985年   20篇
  1984年   30篇
  1983年   21篇
  1982年   30篇
  1981年   33篇
  1980年   28篇
  1979年   23篇
  1978年   30篇
  1977年   23篇
  1976年   20篇
  1975年   17篇
  1974年   20篇
  1973年   19篇
  1972年   14篇
  1971年   13篇
排序方式: 共有1860条查询结果,搜索用时 140 毫秒
91.
Dielectrophoresis (DEP) is an AC electrokinetic effect mainly used to manipulate cells. Smaller particles, like virions, antibodies, enzymes, and even dye molecules can be immobilized by DEP as well. In principle, it was shown that enzymes are active after immobilization by DEP, but no quantification of the retained activity was reported so far. In this study, the activity of the enzyme horseradish peroxidase (HRP) is quantified after immobilization by DEP. For this, HRP is immobilized on regular arrays of titanium nitride ring electrodes of 500 nm diameter and 20 nm widths. The activity of HRP on the electrode chip is measured with a limit of detection of 60 fg HRP by observing the enzymatic turnover of Amplex Red and H2O2 to fluorescent resorufin by fluorescence microscopy. The initial activity of the permanently immobilized HRP equals up to 45% of the activity that can be expected for an ideal monolayer of HRP molecules on all electrodes of the array. Localization of the immobilizate on the electrodes is accomplished by staining with the fluorescent product of the enzyme reaction. The high residual activity of enzymes after AC field induced immobilization shows the method's suitability for biosensing and research applications.  相似文献   
92.
Poor aqueous solubility of active compounds is a major issue in today’s drug delivery. In this study the smartFilm-technology was exploited to improve the dermal penetration efficacy of a poorly soluble active compound (curcumin). Results were compared to the dermal penetration efficacy of curcumin from curcumin bulk suspensions and nanocrystals, respectively. The smartFilms enabled an effective dermal and transdermal penetration of curcumin, whereas curcumin bulk- and nanosuspensions were less efficient when the curcumin content was similar to the curcumin content in the smartFilms. Interestingly, it was found that increasing numbers of curcumin particles within the suspensions increased the passive dermal penetration of curcumin. The effect is caused by an aqueous meniscus that is created between particle and skin if the dispersion medium evaporates. The connecting liquid meniscus causes a local swelling of the stratum corneum and maintains a high local concentration gradient between drug particles and skin. Thus, leading to a high local passive dermal penetration of curcumin. The findings suggest a new dermal penetration mechanism for active compounds from nano-particulate drug delivery systems, which can be the base for the development of topical drug products with improved penetration efficacy in the future.  相似文献   
93.
The use of flow photochemistry and its apparent superiority over batch has been reported by a number of groups in recent years. To rigorously determine whether flow does indeed have an advantage over batch, a broad range of synthetic photochemical transformations were optimized in both reactor modes and their yields and productivities compared. Surprisingly, yields were essentially identical in all comparative cases. Even more revealing was the observation that the productivity of flow reactors varied very little to that of their batch counterparts when the key reaction parameters were matched. Those with a single layer of fluorinated ethylene propylene (FEP) had an average productivity 20 % lower than that of batch, whereas three‐layer reactors were 20 % more productive. Finally, the utility of flow chemistry was demonstrated in the scale‐up of the ring‐opening reaction of a potentially explosive [1.1.1] propellane with butane‐2,3‐dione.  相似文献   
94.
95.
Noninvasive monitoring of vascularization can potentially diagnose impaired bone healing earlier than current radiographic methods. In this study, a noncontact diffuse correlation tomography (DCT) technique was employed to measure longitudinal blood flow changes during bone healing in a murine femoral fracture model. The three-dimensional distribution of the relative blood flow was quantified from one day pre-fracture to 48 days post-fracture. For three mice, frequent DCT measurements were performed every other day for one week after fracture, and then weekly thereafter. A decrease in blood flow was observed in the bone fracture region at one day post-fracture, followed by a monotonic increase in blood flow beyond the pre-injury baseline until five to seven days post-fracture. For the remaining 12 mice, only weekly DCT measurements were performed. Data collected on a weekly basis show the blood flow for most mice was elevated above baseline during the first two post-fracture weeks, followed by a subsequent decrease. Torsional strength of the excised femurs was measured for all 15 mice after 7 weeks of healing. A metric based on the early blood flow changes shows a statistically significant difference between the high strength group and the low strength group.  相似文献   
96.
The reversible introduction of functionality at material surfaces is of interest for the development of functional biomaterials. In particular, the use of supramolecular immobilization strategies facilitates mild reaction and processing conditions, as compared to other covalent analogues. Here, the engineering of multicomponent supramolecular materials, beyond the use of a single supramolecular entity is proposed. Cucurbit[8]uril (Q8) mediated host–guest chemistry is combined with hydrogen bonding supramolecular 2‐ureido‐4‐pyrimidinone (UPy)‐based materials. The modular incorporation of a UPy‐additive that presents one guest to incorporate into the Q8 host allows for selective supramolecular functionalization at the water–polymer material interface. Supramolecular ternary complex formation at the material surface was studied by X‐ray photoelectron spectroscopy, which as a result of large overlap in atomic composition of the different components showed minor changes is surface composition upon complex formation. Surface MALDI‐ToF MS measurements revealed useful insights in the formation of complexes. Protein immobilization was monitored using both fluorescence spectroscopy and quartz crystal microbalance with dissipation monitoring, which successfully demonstrated ternary complex formation. Although proteins could selectively be immobilized onto the surfaces, control of the system's stability remains a challenge as a result of the dynamicity of the host–guest assembly. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3607–3616  相似文献   
97.
Reducing the strain in brittle device layers is critical in the fabrication of robust flexible electronic devices. In this study, the cracking behavior of micro-patterned 500-nm-thick Ti films was investigated via uniaxial tensile testing by in situ SEM and 4-point probe measurements. Both visual observations by SEM and 4-pt resistance measurements showed that strategically patterned oval holes, off-set and rotated by 45°, had a significant effect on limiting the extent of cracking, specifically, in preventing cracks from converging. Failure with regard to electrical conduction was delayed from less than 2% to more than 10% strain.  相似文献   
98.
A high‐repetition‐rate pump–probe experiment is presented, based on the asynchronous sampling approach. The low‐α mode at the synchrotron ANKA can be used for a time resolution down to the picosecond limit for the time‐domain sampling of the coherent THz emission as well as for hard X‐ray pump–probe experiments, which probe structural dynamics in the condensed phase. It is shown that a synchronization of better than 1 ps is achieved, and examples of phonon dynamics of semiconductors are presented.  相似文献   
99.
100.
Rapid initiation of reactions in Al/Ni multilayers with nanoscale layering   总被引:3,自引:0,他引:3  
Research into nanoenergetic materials is enabling new capabilities for controlling exothermic reaction rates and energy output, as well as new methods for integrating these materials with conventional electronics fabrication techniques. Many reactions produce primarily heat, and in some cases it is desirable to increase the rate of heat release beyond what is typically observed. Here we investigate the Al-Ni intermetallic reaction, which normally propagates across films or foils at rates lower than 10 m/s. However, models and experiments indicate that local heating rates can be very high (107 K/s), and uniform heating of such a multilayer film can lead to a rapid, thermally explosive type of reaction. With the hopes of using a device to transduce electrical energy to kinetic energy of a flyer plate in the timescale of 100's of nanoseconds, we have incorporated a Ni/Al nanolayer film that locally heats upon application of a large electrical current. We observed flyer plate velocities in the 2-6 km/s range, corresponding to 4-36 kJ/g in terms of specific kinetic energy. Several samples containing Ni/Al films with different bilayer thicknesses were tested, and many produced additional kinetic energy in the 1.1-2.3 kJ/g range, as would be expected from the Ni-Al intermetallic reaction. These results provide evidence that nanoscale Ni/Al layers reacted in the timescale necessary to contribute to device output.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号