首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A micro flow system consisting of micromixers and microtube reactors provides an effective method for the introduction of two electrophiles onto p‐, m‐, and o‐dibromobenzenes. The Br–Li exchange reaction of p‐dibromobenzene with nBuLi can be conducted by using the micro flow system at 20 °C, although much lower temperatures (p‐bromophenyllithium was allowed to react with an electrophile in the micro flow system at 20 °C. The p‐substituted bromobenzene thus obtained was subjected to a second Br–Li exchange reaction followed by reaction with a second electrophile at 20 °C in one flow. A similar transformation can be carried out with m‐dibromobenzene by using the micro flow system. However, the Br–Li exchange reaction of o‐dibromobenzene followed by reaction with an electrophile should be conducted at ?78 °C to avoid benzyne formation. The second Br–Li exchange reaction followed by reaction with an electrophile can be carried out at 0 °C. By using the present method, a variety of p‐, m‐, and o‐disubstituted benzenes were synthesized in one flow at much higher temperatures than are required for conventional batch reactions.  相似文献   

2.
With the development of new photocatalytic methods over recent decades, the translation of these chemical reactions to industrial‐production scales using continuous‐flow reactors has become a topic of increasing interest. In this context, we describe our studies toward elucidating an empirically derived parameter for scaling photocatalytic reactions in flow. By evaluating the performance of a photocatalytic C?N cross‐coupling reaction across multiple reactor sizes and geometries, it was demonstrated that expressing product yield as a function of the absorbed photon equivalents provides a predictive, empirical scaling parameter. Through the use of this scaling factor and characterization of the photonic flux within each reactor, the cross‐coupling was scaled successfully from the milligram scale in batch to a multi‐kilogram reaction in flow.  相似文献   

3.
Currently, kinetic data is either collected under steady‐state conditions in flow or by generating time‐series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time‐series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one‐at‐a‐time flow experiments, and thus allows for the rapid generation of kinetic data.  相似文献   

4.
The synthesis of stilbene esters using Wittig chemistry has been used to illustrate the generic diversity micro reactors offer in terms of chemical control and rapid method development. The micro reactor consisted of a 'T' design based on channel geometries 200 microns wide and 100 microns deep, etched into borosilicate glass and sealed with a borosilicate top plate using a thermal bonding technique. The movement of the reagent and products was achieved using electroosmotic flow (EOF), assisted by the incorporation of micro porous silica frits within the micro-channels to allow accurate solution control. To optimise the operating conditions methyl 4-formylbenzoate, premixed with sodium methoxide, was reacted with 2-nitrobenzyl-triphenylphosphonium bromide in dry degassed MeOH using flow conditions for both reagents of 0.40 microL min-1 for 20 min. A product yield of 70% (2:1 reaction stoichiometry with the aldehyde in excess) was obtained representing a 10% increase compared with the traditional batch synthesis. To demonstrate the capability of micro reactors to perform atom efficient synthesis a series of experiments based on an injection methodology (optimised to 30 s) were performed in the micro reactor at 1:1 stoichiometry resulting in a yield of 59%. Finally, the capability of micro reactors to perform a series of analogue reactions was investigated. The yields for a further three aldehydes indicated that the technology will be suitable for the development of automated device to support the generation of combinatorial libraries and rapid high throughput synthetic methods.  相似文献   

5.
Micro reaction technology offers a safe, controllable and information rich technique suitable for the long-term production of pharmaceutical agents and fine chemicals. To date however, few of the syntheses performed using this technology have addressed the problems associated with product purification. With this in mind, we report herein the incorporation of multiple supported reagents into EOF-based miniaturized flow reactors for the two-step synthesis of analytically pure compounds. Using this approach, the successful synthesis of 20 alpha,beta-unsaturated compounds in excellent yields (>99.1%) and purities (>99.9%) has been achieved, illustrating significant improvements compared to traditional batch techniques.  相似文献   

6.
As one of the emerging techniques for preparing discrete oligomers, the photo‐RAFT single unit monomer insertion (SUMI) process has shown its uniqueness and superiority in the control of both monomer sequence and stereochemistry. However, current precision polymer synthesis techniques are still burdened by the scalability challenges, such as low reaction yields, small product quantities, and long production times. Herein, we successfully established a practical protocol to address scalability problems in the photo‐RAFT SUMI processes. A series of discrete oligomers containing up to five monomer units were synthesized in batch and flow reactors by sequential and alternating SUMI of two monomers into a trithiocarbonate RAFT agent under mild reaction conditions and purified by automated flash chromatography. This protocol offers the process with large quantity (grams scale), excellent isolated yields (82%–95% for each step and 59% for five iterations), and short production time (several days for a pentamer). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1947–1955  相似文献   

7.
3D‐printed flow reactors were designed, fabricated from different materials (PLA, HIPS, nylon), and used for a catalytic stereoselective Henry reaction. The use of readily prepared and tunable 3D‐printed reactors enabled the rapid screening of devices with different sizes, shapes, and channel dimensions, aimed at the identification of the best‐performing reactor setup. The optimized process afforded the products in high yields, moderate diastereoselectivity, and up to 90 % ee . The method was applied to the continuous‐flow synthesis of biologically active chiral 1,2‐amino alcohols (norephedrine, metaraminol, and methoxamine) through a two‐step sequence combining the nitroaldol reaction with a hydrogenation. To highlight potential industrial applications of this method, a multistep continuous synthesis of norephedrine has been realized. The product was isolated without any intermediate purifications or solvent switches.  相似文献   

8.
In this study, a new pyridinium‐tagged Ru complex was designed and anchored onto sulfonated silica, thereby forming a robust and highly active supported olefin‐metathesis pre‐catalyst for applications under batch and continuous‐flow conditions. The involvement of an oxazine–benzylidene ligand allowed the reactivity of the formed Ru pre‐catalyst to be efficiently controlled through both steric and electronic activation. The oxazine scaffold facilitated the introduction of the pyridinium tag, thereby affording the corresponding cationic pre‐catalyst in good yield. Excellent activities in ring‐closing (RCM), cross (CM), and enyne metathesis were observed with only 0.5 mol % loading of the pre‐catalyst. When this powerful pre‐catalyst was immobilized onto a silica‐based cationic‐exchange resin, a versatile catalytically active material for batch reactions was generated that also served as fixed‐bed material for flow reactors. This system could be reused at 1 mol % loading to afford metathesis products in high purity with very low ruthenium contamination under batch conditions (below 5 ppm). Scavenging procedures for both batch and flow processes were conducted, which led to a lowering of the ruthenium content to as little as one tenth of the original values.  相似文献   

9.
The kinetics of cellulose hydrolysis under extremely low acid (ELA) conditions (0.07 wt%) and at temperatures >200°C was investigated using batch reactors and bed-shrinking flow-through (BSFT) reactors. The maximum yield of glucose obtained from batch reactor experiments was about 60% for α-cellulose, which occurred at 205 and 220°C. The maximum glucose yields from yellow poplar feedstockswere substantially lower, falling in the range of 26–50%. With yellow poplar feedstocks, a large amount of glucose was unaccounted for at the latter phase of the batch reactions. It appears that a substantial amount of released glucose condenses with nonglucosidic substances. in liquid. The rate of glucan hydrolysis under ELA was relatively insensitive to temperature in batch experiments for all three substrates. This contradicts the traditional concept of cellulose hydrolysis and implies that additional factors influence the hydrolysis of glucan under ELA. Inexperiments using BSFT reactors, the glucose yields of 87.5, 90,3, and 90.8% were obtained for yellow poplar feedstocks at 205, 220, and 235°C, respectively. The hydrolysis rate for glucan was about three times higher with the BSFT than with the batch reactors. The difference of observed kinetics and performance data between the BSFT and the batch reactors was far above that predicted by the reactor theory.  相似文献   

10.
Microwave heating in chemical reactions was first reported in 1986. There have since been many reports employing microwave heating in organic chemistry, where microwave heating has afforded higher yields of products in shorter time periods. However, such reactions are challenging to scale in batch due to the limited penetration depth of microwaves as well as the wave propagation dependence on cavity size. Continuous flow has addressed both these issues, enabling scalability of microwave processes. As such, a host of reports employing microwave flow chemistry have emerged, employing various microwave heating and reactor configurations in the context of either custom‐built or commercial apparatus. The focus of this review is to present the benefits of microwave heating in the context of continuous flow and to characterize the different types of microwave flow apparatus by their design (oscillator, cavity type and reactor vessel). We advocate the adoption of tunable, solid‐state oscillator single‐mode microwave flow reactors which are more versatile heaters, impart better process control and energy efficiency toward laboratory and larger‐scale synthetic chemistry applications.  相似文献   

11.
We report a simple, mild, and synthetically clean approach to accelerate the rate of enzymatic oxidation reactions by a factor of up to 100 when compared to conventional batch gas/liquid systems. Biocatalytic decomposition of H2O2 is used to produce a soluble source of O2 directly in reaction media, thereby enabling the concentration of aqueous O2 to be increased beyond equilibrium solubility under safe and practical conditions. To best exploit this method, a novel flow reactor was developed to maximize productivity (g product L?1 h?1). This scalable benchtop method provides a distinct advantage over conventional bio‐oxidation in that no pressurized gas or specialist equipment is employed. The method is general across different oxidase enzymes and compatible with a variety of functional groups. These results culminate in record space‐time yields for bio‐oxidation.  相似文献   

12.
Due to the narrow width of tubing/reactors used, photochemistry performed in micro‐ and mesoflow systems is significantly more efficient than when performed in batch due to the Beer‐Lambert Law. Owing to the constant removal of product and facility of flow chemical scalability, the degree of degradation observed is generally decreased and the productivity of photochemical processes is increased. In this Personal Account, we describe a wide range of photochemical transformations we have examined using both visible and UV light, covering cyclizations, intermolecular couplings, radical polymerizations, as well as singlet oxygen oxygenations.  相似文献   

13.
Recently, biodiesel has become more attractive as an alternative diesel fuel because it is renewable, biodegradable, non-toxic, and environmentally friendly. In this study, we have developed a new green process called ??hydrothermal electrolysis??, by which industrial wastewater can be converted to more value-added chemicals under high-temperature and high-pressure aqueous conditions. We prepared model biodiesel wastewater and carried out hydrothermal electrolysis experiments by using both a continuous flow reactor and a batch autoclave. Current efficiencies and the effects of reaction time and reaction temperature on the decomposition of biodiesel wastewater and removal of total organic carbon (TOC) were investigated under various operating conditions. It was found that conversions of both TOC and glycerol inside the model biodiesel wastewater increased with increasing applied current. With the autoclave, the maximum glycerol conversion was recorded as 83% by applying 1 A current at 250 °C, whereas with the flow reactor, 75% of glycerol was converted into gas and liquid products under the effect of 1 A current for 60 min at a reaction temperature of 280 °C. In the case of TOC removal from the liquid product solution, under identical conditions, it was found that 23 and 15.9% TOC conversions were achieved by the batch and continuous flow reactors, respectively.  相似文献   

14.
Solid reagents, leaching catalysts, and heterogeneous photocatalysts are commonly employed in batch processes but are ill‐suited for continuous‐flow chemistry. Heterogeneous catalysts for thermal reactions are typically used in packed‐bed reactors, which cannot be penetrated by light and thus are not suitable for photocatalytic reactions involving solids. We demonstrate that serial micro‐batch reactors (SMBRs) allow for the continuous utilization of solid materials together with liquids and gases in flow. This technology was utilized to develop selective and efficient fluorination reactions using a modified graphitic carbon nitride heterogeneous catalyst instead of costly homogeneous metal polypyridyl complexes. The merger of this inexpensive, recyclable catalyst and the SMBR approach enables sustainable and scalable photocatalysis.  相似文献   

15.
A membrane reactor consisting of two recirculating flow systems connected via a membrane module has been constructed and used to study the dehydrogenation of cyclohexane. When the reactor is operated differentially it is possible to obtain the same information that is generated when using more conventional steady flow reactors. The batch system has the advantages of easily varying the ratio of membrane area to reactor volume and sampling a very wide range of effective Damköhler numbers. These are important variables in design studies. This ability has been demonstrated for the dehydrogenation of cyclohexane. The batch system reproduced results from studies using a more conventional flow reactor. In addition, with the batch reactor it was possible to experimentally confirm predictions that were based upon computer simulation but which were outside the range of experimental study for the conventional reactors used.  相似文献   

16.
Aryl amines are important pharmaceutical intermediates among other numerous applications. Herein, an environmentally benign route and novel approach to aryl amine synthesis using dehydrative amination of phenols with amines and styrene under continuous‐flow conditions was developed. Inexpensive and readily available phenols were efficiently converted into the corresponding aryl amines, with small amounts of easily removable co‐products (i.e., H2O and alkanes), in multistep continuous‐flow reactors in the presence of heterogeneous Pd catalysts. The high product selectivity and functional‐group tolerance of this method allowed aryl amines with diverse functional groups to be selectively obtained in high yields over a continuous operation time of one week.  相似文献   

17.
Pretreatment experiments were carried out to demonstrate high xylose yields at high solids loadings in two different batch pretreatment reactors under process-relevant conditions. Corn stover was pretreated with dilute sulfuric acid using a 4-l Steam Digester and a 4-l stirred ZipperClave® reactor. Solids were loaded at 45% dry matter (wt/wt) after sulfuric acid catalyst impregnation using nominal particle sizes of either 6 or 18 mm. Pretreatment was carried out at temperatures between 180 and 200 °C at residence times of either 90 or 105 s. Results demonstrate an ability to achieve high xylose yields (>80%) over a range of pretreatment conditions, with performance showing little dependence on particle size or pretreatment reactor type. The high xylose yields are attributed to effective catalyst impregnation and rapid rates of heat transfer during pretreatment.  相似文献   

18.
A flow microreactor system consisting of micromixers and microtube reactors provides an effective tool for the generation and reactions of aryllithiums bearing an alkoxycarbonyl group at para‐, meta‐, and ortho‐positions. Alkyl p‐ and m‐lithiobenzoates were generated by the I/Li exchange reaction with PhLi. The Br/Li exchange reactions with sBuLi were unsuccessful. Subsequent reactions of the resulting aryllithiums with electrophiles gave the desired products in good yields. On the other hand, alkyl o‐lithiobenzoates were successfully generated by the Br/Li exchange reaction with sBuLi. Subsequent reactions with electrophiles gave the desired products in good yields.  相似文献   

19.
With the development of new photocatalytic methods over recent decades, the translation of these chemical reactions to industrial-production scales using continuous-flow reactors has become a topic of increasing interest. In this context, we describe our studies toward elucidating an empirically derived parameter for scaling photocatalytic reactions in flow. By evaluating the performance of a photocatalytic C−N cross-coupling reaction across multiple reactor sizes and geometries, it was demonstrated that expressing product yield as a function of the absorbed photon equivalents provides a predictive, empirical scaling parameter. Through the use of this scaling factor and characterization of the photonic flux within each reactor, the cross-coupling was scaled successfully from the milligram scale in batch to a multi-kilogram reaction in flow.  相似文献   

20.
In recent years, continuous‐flow/microreactor processing for the preparation of colloidal nanocrystals has received considerable attention. The intrinsic advantages of microfluidic reactors have opened new opportunities for the size‐controlled synthesis of nanocrystals either in the laboratory or on a large scale. Herein, an experimentally simple protocol for the size‐tunable continuous‐flow synthesis of rather monodisperse CdSe quantum dots (QDs) is presented. CdSe QDs are manufactured by using cadmium oleate as cadmium source, selenium dioxide as selenium precursor, and 1‐octadecene as solvent. Exploiting selenium dioxide as selenium source and 1‐octadecene as solvent allows execution of the complete process in open air without any requirement for air‐free manipulations using a glove box or Schlenk line. Continuous‐flow processing is performed with a stainless steel coil of 1.0 mm inner diameter pumping the combined precursor solution through the reactor by applying a standard HPLC pump. The effect of different reaction parameters, such as temperature, residence time, and flow rate, on the properties of the resulting CdSe QDs was investigated. A temperature increase from 240 to 260 °C or an extension of the residence time from 2 to 20 min affords larger nanocrystals (range 3–6 nm) whereas the size distribution does not change significantly. Longer reaction times and higher temperatures result in QDs with lower quantum yields (range 11–28 %). The quality of the synthesized CdSe QDs was confirmed by UV/Vis and photoluminescence spectroscopy, small‐angle X‐ray scattering, and high‐resolution transmission electron microscopy. Finally, the potential of this protocol for large‐scale manufacturing was evaluated and by operating the continuous‐flow process for 87 min it was possible to produce 167 mg of CdSe QDs (with a mean diameter of 4 nm) with a quantum yield of 28 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号