首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   5篇
化学   74篇
数学   6篇
物理学   4篇
  2023年   2篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   8篇
  2012年   12篇
  2011年   3篇
  2010年   8篇
  2009年   2篇
  2008年   11篇
  2007年   7篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
41.
First results are reported on overtone (v(OH) = 2 ← 0) spectroscopy of weakly bound H(2)-H(2)O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H(2)-H(2)O, followed by (ii) UV photodissociation of the resulting H(2)O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H(2) and ortho (I = 1) H(2)O (oH(2)-oH(2)O). Specifically, two distinct bands are seen in the oH(2)-oH(2)O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH(2)-oH(2)O, pH(2)-pH(2)O, or oH(2)-pH(2)O) are observed above current signal to noise level, which for the pH(2) complexes is argued to arise from displacement by oH(2) in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH(2)-oH(2)O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H(2) and H(2)O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.  相似文献   
42.
Nanoporous SnO(2)-ZnO heterojunction nanocatalyst was prepared by a straightforward two-step procedure involving, first, the synthesis of nanosized SnO(2) particles by homogeneous precipitation combined with a hydrothermal treatment and, second, the reaction of the as-prepared SnO(2) particles with zinc acetate followed by calcination at 500 °C. The resulting nanocatalysts were characterized by X-ray diffraction (XRD), FTIR, Raman, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analyses, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy. The SnO(2)-ZnO photocatalyst was made of a mesoporous network of aggregated wurtzite ZnO and cassiterite SnO(2) nanocrystallites, the size of which was estimated to be 27 and 4.5 nm, respectively, after calcination. According to UV-visible diffuse reflectance spectroscopy, the evident energy band gap value of the SnO(2)-ZnO photocatalyst was estimated to be 3.23 eV to be compared with those of pure SnO(2), that is, 3.7 eV, and ZnO, that is, 3.2 eV, analogues. The energy band diagram of the SnO(2)-ZnO heterostructure was directly determined by combining XPS and the energy band gap values. The valence band and conduction band offsets were calculated to be 0.70 ± 0.05 eV and 0.20 ± 0.05 eV, respectively, which revealed a type-II band alignment. Moreover, the heterostructure SnO(2)-ZnO photocatalyst showed much higher photocatalytic activities for the degradation of methylene blue than those of individual SnO(2) and ZnO nanomaterials. This behavior was rationalized in terms of better charge separation and the suppression of charge recombination in the SnO(2)-ZnO photocatalyst because of the energy difference between the conduction band edges of SnO(2) and ZnO as evidenced by the band alignment determination. Finally, this mesoporous SnO(2)-ZnO heterojunction nanocatalyst was stable and could be easily recycled several times opening new avenues for potential industrial applications.  相似文献   
43.
Cross sections and rate coefficients for low lying rotational transitions in H(2)O colliding with para-hydrogen pH(2) are computed using an adiabatic approximation which reduces the dimensional dynamics from a 5D to a 3D problem. Calculations have been performed at the close-coupling level using the recent potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)]. A good agreement is found between the reduced adiabatic calculations and the 5D exact calculations, with an impressive time saving and memory gain. This adiabatic reduction of dimensionality seems very promising for scattering studies involving the excitation of a heavy target molecule by a light molecular projectile.  相似文献   
44.
Relative intensity noise and frequency noise have been measured for the first time for a single-frequency Brillouin chalcogenide As38Se62 fiber laser. This is also the first demonstration of a compact suspended-core fiber Brillouin laser, which exhibits a low threshold power of 22 mW and a slope efficiency of 26% for nonresonant pumping.  相似文献   
45.
New photosensitive alkoxyamines have been designed using molecular orbital calculations to improve the selective C O versus N O cleavage. The targeted light‐sensitive alkoxyamine is synthesized in one step and its reactivity under UV has been investigated using both ESR and LFP. The ability of this alkoxyamine to control the photopolymerization of n‐butyl acrylate is evidenced through a process called nitroxide‐mediated photopolymerization NMP2. The selected alkoxyamine is finally used to prepare covalently bonded multilayered micropatterns. This original application highlights the high potential of this technique for some specific applications that require spatial control.

  相似文献   

46.
Poly(N-acryloylmorpholine) (PNAM)-decorated waterborne nanoparticles comprising a core of either degradable polystyrene (PS) or poly(n-butyl acrylate) (PBA) were synthesized by polymerization-induced self-assembly (PISA) in water. A PNAM bearing a trithiocarbonate chain end (PNAM-TTC) was extended via reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion copolymerization of either styrene (S) or n-butyl acrylate (BA) with dibenzo[c,e]oxepane-5-thione (DOT). Well-defined amphiphilic block copolymers were obtained. The in situ self-assembly of these polymers resulted in the formation of stable nanoparticles. The insertion of thioester units in the vinylic blocks enabled their degradation under basic conditions. The same strategy was then applied to the emulsion copolymerization of BA with DOT using a poly(ethylene glycol) (PEG) equipped with a trithiocarbonate end group, resulting in PEG-decorated nanoparticles with degradable PBA-based cores.  相似文献   
47.
In a recent article, we have showed that the nitroxide mediated polymerization of methyl methacrylate was possible up to 80% conversion for reasonable masses Mn = 60,000 g mol?1 when 2,2‐diphenyl‐3‐phenylimino‐2,3‐dihydroindol‐1‐yloxyl nitroxide (DPAIO) was used as control agent. We have claimed that the success of this experiment relied on the absence of H‐transfer reaction both in the alkoxyamine and between alkyl and nitroxyl radical. In this article, the decomposition of 4‐nitrophenyl 2‐(2,2,6,6‐tetramethylpiperidine‐1‐yloxy)‐2‐methylpropionate ( 1a ) and 4‐nitrophenyl 2‐(2,2‐diphenyl‐3‐phenylimino‐2,3‐dihydroindol‐1‐yloxy)‐2‐methylpropanoate ( 2a ) has been studied by 1H NMR in the presence and in the absence (persistent radical effect condition) of scavenger (thiophenol PhSH). At temperature lower than the one used for polymerization, fast and quantitative H‐transfer reaction was observed for 1a whereas no H‐transfer reaction was observed for 2a . The scavenging technique proved for the first time that the H‐transfer was an intermolecular process for 1a . However, the slow side‐reaction of N? OC bond homolysis, which did not impede the control of the polymerization but may exert a detrimental effect on the livingness, was observed and quantified for 2a . © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6828–6842, 2008  相似文献   
48.
The photopolymerization ability of photosensitized alkoxyamines has been investigated. These compounds behave as interesting two‐component photoinitiators. Laser flash photolysis, electron spin resonance, and density functional theory allow to support the interactions encountered between the photosensitizer (benzophenone and isopropylthioxanthone) and the alkoxyamines (C? O bond breaking and hydrogen transfer) and the side reactions of the nitroxide radical with photosensitizer (electron transfer). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2910–2915, 2010  相似文献   
49.
Branching was detected in polyacrylates synthesised through radical polymerization via solution-state NMR, while inconsistencies have been reported for the determination of the molar mass of hydrophilic polyacrylates using aqueous-phase and organic-phase size-exclusion chromatography. In this work, poly(sodium acrylate)s, PNaAs, of various topologies were separated for the first time using free-solution capillary electrophoresis (CE). Free-solution CE does not separate the PNaAs by their molar mass, similarly to separations by liquid chromatography in the critical conditions, rather by different topologies (linear, star branched, and hyperbranched). The electrophoretic mobility of PNaAs increases as the degree of branching decreases. Separation is shown to be not only by the topology but also by the end groups as expected for a separation in the critical conditions: replacing a relatively bulky nitroxide end group with hydrogen atom yielded a higher electrophoretic mobility. This novel method, capillary electrophoresis in the critical conditions enabled, for the first time, the separation of hydrophilic polyacrylates according to their topology (branching) and their chain ends. This will allow meaningful and accurate characterization of their branched topologies as well as molar masses and progress in for advanced applications such as drug delivery or flocculation.
Figure
Free solution Capillary Electrophoresis (CE) of polyacrylates with various topologies  相似文献   
50.
The search for photosensitive alkoxyamines represents a huge challenge. The key parameters governing the cleavage process remain unknown. The dissociation process of light sensitive alkoxyamines is studied as a function of their chemical structures. The photochemical properties of 6 selected compounds are investigated by ESR and laser flash photolysis. It is found that (i) the selectivity of the cleavable N-O vs. C-O bond and (ii) the efficiency of the nitroxide formation are strongly related to the alkoxyamine structure. The distance between the chromophore and the aminoxy group is a key parameter for an efficient pathway of the radical generation as displayed by the photopolymerization ability of these alkoxyamines.  相似文献   
[首页] « 上一页 [1] [2] [3] [4] 5 [6] [7] [8] [9] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号