首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   9篇
化学   202篇
力学   2篇
数学   5篇
物理学   10篇
  2023年   2篇
  2021年   2篇
  2020年   12篇
  2019年   13篇
  2018年   10篇
  2017年   7篇
  2016年   11篇
  2015年   11篇
  2014年   13篇
  2013年   18篇
  2012年   25篇
  2011年   20篇
  2010年   13篇
  2009年   12篇
  2008年   4篇
  2007年   7篇
  2006年   9篇
  2005年   4篇
  2004年   8篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  1999年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1987年   1篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
41.
Dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography (HPLC)-UV detection was applied for the extraction and determination of bisphenol A (BPA) in water samples. An appropriate mixture of acetone (disperser solvent) and chloroform (extraction solvent) was injected rapidly into a water sample containing BPA. After extraction, sedimented phase was analyzed by HPLC-UV. Under the optimum conditions (extractant solvent: 142 μL of chloroform, disperser solvent: 2.0 mL of acetone, and without salt addition), the calibration graph was linear in the range of 0.5–100 μg L−1 with the detection limit of 0.07 μg L−1 for BPA. The relative standard deviation (RSD, n = 5) for the extraction and determination of 100 μg L−1 of BPA in the aqueous samples was 6.0%. The results showed that DLLME is a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of BPA in water samples and suitable results were obtained.  相似文献   
42.
A supramolecular solvent consisting of reverse micelles of decanoic acid, dispersed in a continuous phase of tetrahydrofuran:water, was proposed as an efficient microextraction technique for extraction of selected chlorophenoxy acid herbicides from water samples prior to high-performance liquid chromatography UV determination. The disperser solvent (1.0 mL tetrahydrofuran) containing 20 mg decanoic acid was rapidly injected into 10.0 mL of water sample. After centrifugation, the reverse micelle-rich phase (25 ± 0.5 μL) was floated at top of the home-designed centrifuge tube. The solvent was collected and 20 μL of it was injected into high-performance liquid chromatography for analysis. The results showed that the in situ solvent formation and extraction process can be completed in a few seconds. Under the optimal conditions, limits of detection of the method for 4-chloro-2-methylphenoxyacetic acid and 2,4-dichlorophenoxyacetic acid were in the range of 0.5-0.8 μg L(-1) and the repeatability of the proposed method, expressed as relative standard deviation, varied in the range of 2.5-3.2%. Linearity was found to be in the range of 1-200 μg L(-1) and the preconcentration factors were between 148 and 157. The mean percentage recoveries exceeded 92.0% for all the spiking levels in real water samples.  相似文献   
43.
44.
Biomorphic porous ZnO nanostructures were successfully synthesized via an aqueous sol–gel soaking process using pieces of apple flesh and skin as templates and employed for glucose direct electrochemical biosensor. The structure and morphology of ZnO nanostructures were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). By modifying glassy carbon electrode with the biomorphic ZnO nanostructures and Nafion, two glucose biosensors were constructed and their direct electrochemistry of glucose oxidase (GOD) was successfully investigated by cyclic voltammetry (CV). The biomorphic porous ZnO nanostructures using apple skin template (S-ZnO) were more effective in facilitating the electron transfer of immobilized GOD than that of using flesh apple template (F-ZnO). This may be a result of the unique morphology and smaller average crystallite size of the S-ZnO nanostructure. GOD immobilized on Nafion-porous S-ZnO nanostructure composite display direct, reversible, and surface-controlled redox reaction with a detection limit of 10 μM, a response time of 7 s, high sensitivity of 23.4 μA/mM cm2 and a fast heterogeneous electron transfer rate with a rate constant (ks) of 3.9 s?1. It was found that S-ZnO significantly has improved the direct electron transfer between GOD and glassy carbon electrode with good stability and reproducibility.  相似文献   
45.
Hollow fiber liquid-phase microextraction (HF-LPME) offers an efficient alternative to classical techniques for sample preparation and preconcentration. Features include high selectivity, good enrichment factors, and improved possibilities for automation. HP-LPME relies on the extraction of target analytes from aqueous samples into a supported liquid membrane (SLM) sustained in the pores of the wall of a porous hollow fiber, and then into an acceptor phase (that can be aqueous or organic) in the lumen of the hollow fiber. After extraction, the acceptor solution is directly subjected to a chemical analysis. HP-LPME can be performed in either the 2- or 3-phases mode. In the 2-phase mode, the organic solvent is present both in the porous wall and inside the lumen of the hollow fiber. In the 3-phase mode, the acceptor phase can be aqueous and this results in a conventional 3-phase system compatible with HPLC or capillary electrophoresis. Alternatively, the acceptor solution is organic and this represents a 3-phase extraction system with two immiscible organic solvents that is compatible with all common analytical instruments. In HP-LPME methods based on the use of SLMs, the mass transfer occurs by passive diffusion, and high extraction yields as well as efficient extraction kinetics are obtained by applying a pH gradient. In addition, active transport can be performed by using carrier or applying an electrical potential across the SLM. Due to high analyte preconcentration, excellent sample clean-up, and low consumption of organic solvent, HF-LPME has a large application potential in areas such as drug analysis and environmental monitoring. This review focuses on the fundamentals of extraction principles, technical implementations, and future trends in HF-LPME.
Figure
Schematic diagram of three-phase HF-LPME based of two immiscible organic solvent  相似文献   
46.
We have developed a 3-phase method for dispersive liquid-liquid microextraction of ß-lactam antibiotics in milk. Chloroform and acetonitrile serve as the solvents for extraction and disperssion, respectively, where Aliquat 336 is the carrier. An experimental design based on Plackett-Burman and Central composite designs were applied for the screening and optimization of significant parameters in the extraction method. The experimental conditions for extraction were optimized, and the subsequent HPLC assay gave relative standard deviations and detection limits in the range of 4.3–8.5 % and 50–500 μg L-1, respectively. Preconcentration factors are in the range of 80–125.
Figure
We have developed a 3-phase method for dispersive liquid-liquid microextraction of ß-lactam antibiotics in milk. Chloroform and acetonitrile serve as the solvents for extraction and disperssion, respectively, where Aliquat 336 is the carrier. An experimental design based on Plackett-Burman and Central composite designs were applied for the screening and optimization of significant parameters in the extraction method.  相似文献   
47.
A novel method for the determination of palladium as a metal ion model was developed by ion pair based surfactant-assisted microextraction (IP-SAME) and inductively coupled plasma-optical detection (ICP-OES). In this methodology, a cationic surfactant was used in extraction process. It has two fundamental functions: (1) the formation of an emulsified phase and (2) the ion pair formation with Pd(II) in the presence of iodide ions and making PdI42−PdI42 extractable into organic phase (active microextraction). The effective parameters on the extraction recovery such as the types of extraction solvent and the surfactant, surfactant concentration, KI amount and HCl concentration of the sample were investigated and optimized. In the proposed approach, tetradecyl trimethyl ammonium bromide (TTAB) was used as emulsifier and ion pairing agent, and 1-octanol was selected as extraction solvent. Under the optimum conditions, the enhancement factor as large as 146 was obtained. The detection limit for palladium was 0.2 μg L−1, and the relative standard deviation (RSD) was 4.1% (n = 5, C = 10.0 μg L−1). The proposed method was applied for extraction and determination of palladium in different water samples.  相似文献   
48.
In Alzheimer's disease, copper binds to amyloid beta (Aβ) peptide and generates oxidative stress. The coordination of histidine (His) residues to Cu(2+) is still uncertain. We studied Cu(2+) binding to Aβ1-16 peptide using the diethyl pyrocarbonate (DEPC) assay and mass spectrometry. Our results show that only one His is involved in Cu(2+) coordination, which is identified as His6 using mass spectral studies. Novel nickel displacement studies have further supported the proposal that the Cu(2+) binding site of Aβ1-16 peptide resembles the ATCUN motif of human serum albumin.  相似文献   
49.
Summary: Polyurea with exotic porous structures has been synthesized by the interfacial polymerization between hexane and a series of 1‐alkyl‐3‐methylimidazolium room‐temperature ionic liquids (ILs). Scanning electron microscopy micrographs of the polyurea show a macroporous morphology of aggregated polymer particles with sizes around 200 nm and pore sizes between 100 to 500 nm. The geometry of the polymer particles and the pore size vary with the ILs employed. X‐Ray diffraction shows ionic‐liquid‐induced suppression of 3D crystalline order in the polyurea products. The microstructures of the polymer together with the FT‐IR results suggest that the observed exotic polymer morphology originates from interactions between the ionic liquid and the polymer.

SEM micrograph of the interconnected macroporous structure of the polyurea formed in [C2mim][BF4] ionic liquid. The scale bar is 100 nm.  相似文献   

50.
Research on Chemical Intermediates - In this study, common naturally occurring organic acids, namely oxalic, malonic, succinic, tartaric and citric acid (as safe, inexpensive, and biodegradable...  相似文献   
[首页] « 上一页 [1] [2] [3] [4] 5 [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号