首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16171篇
  免费   2841篇
  国内免费   2258篇
化学   12241篇
晶体学   221篇
力学   849篇
综合类   151篇
数学   1578篇
物理学   6230篇
  2024年   29篇
  2023年   281篇
  2022年   376篇
  2021年   521篇
  2020年   664篇
  2019年   662篇
  2018年   580篇
  2017年   527篇
  2016年   777篇
  2015年   748篇
  2014年   916篇
  2013年   1284篇
  2012年   1436篇
  2011年   1461篇
  2010年   1045篇
  2009年   1062篇
  2008年   1163篇
  2007年   1065篇
  2006年   956篇
  2005年   867篇
  2004年   693篇
  2003年   570篇
  2002年   626篇
  2001年   466篇
  2000年   344篇
  1999年   343篇
  1998年   263篇
  1997年   236篇
  1996年   211篇
  1995年   175篇
  1994年   147篇
  1993年   117篇
  1992年   118篇
  1991年   107篇
  1990年   80篇
  1989年   71篇
  1988年   48篇
  1987年   34篇
  1986年   40篇
  1985年   35篇
  1984年   22篇
  1983年   18篇
  1982年   16篇
  1981年   17篇
  1980年   9篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1971年   5篇
  1936年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Single phase delafossite CuFeO2 thin films were synthesized by a simple sol–gel method. The influence of polyethylene glycol (PEG) on the morphology and optoelectronic properties of the films was studied by addition of 1.0 g PEG in 10 ml precursor solution. The crystal sizes of the derived CuFeO2 films with and without addition of PEG were 49 nm, but the sample with addition of PEG (labeled as CFO-PEG) showed weaker c-axis orientation growth. The sample without addition of PEG (labeled as CFO) showed a compact surface without detectable pores and had a thickness around 50 nm. However, the sample CFO-PEG exhibited a porous surface with worm-like grains in nanometric scale and had a thickness around 310 nm. Enhanced absorbance in UV–vis region was observed for the sample CFO-PEG which might ascribe to both the thickness and porous surface. The optical direct bandgaps at near-UV were estimated to be ~3.0 and 3.38 eV for the sample CFO-PEG and CFO, respectively. Though the porous surface of CFO-PEG has improved the absorbance in UV–vis region, the resistivity has also been increased due to the homogeneous distribution of interspaces between the worm-like grains, which makes the incident photon to current efficiency of CFO-PEG lower than that of CFO.  相似文献   
992.
Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble-metal co-catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so-called L-NiCo nanosheets with a nonstoichiometric composition and O2−/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2− and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h−1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.  相似文献   
993.
The deployment of high-energy-density lithium-metal batteries has been greatly impeded by Li dendrite growth and safety concerns originating from flammable liquid electrolytes. Herein, we report a stable quasi-solid-state Li metal battery with a deep eutectic solvent (DES)-based self-healing polymer (DSP) electrolyte. This electrolyte was fabricated in a facile manner by in situ copolymerization of 2-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)ethyl methacrylate (UPyMA) and pentaerythritol tetraacrylate (PETEA) monomers in a DES-based electrolyte containing fluoroethylene carbonate (FEC) as an additive. The well-designed DSP electrolyte simultaneously possesses non-flammability, high ionic conductivity and electrochemical stability, and dendrite-free Li plating. When applied in Li metal batteries with a LiMn2O4 cathode, the DSP electrolyte effectively suppressed manganese dissolution from the cathode and enabled high-capacity and a long lifespan at room and elevated temperatures.  相似文献   
994.
Understanding drug-release kinetics is critical for the development of drug-loaded nanoparticles. We developed a J-aggregate-based Förster-resonance energy-transfer (FRET) method to investigate the release of novel high-drug-loading (50 wt %) nanoparticles in comparison with low-drug-loading (0.5 wt %) nanoparticles. Single-dye-loaded nanoparticles form J-aggregates because of the high dye-loading (50 wt %), resulting in a large red-shift (≈110 nm) in the fluorescence spectrum. Dual-dye-loaded nanoparticles with high dye-loading using FRET pairs exhibited not only FRET but also a J-aggregate red-shift (116 nm). Using this J-aggregate-based FRET method, dye-core–polymer-shell nanoparticles showed two release processes intracellularly: the dissolution of the dye aggregates into dye molecules and the release of the dye molecules from the polymer shell. Also, the high-dye-loading nanoparticles (50 wt %) exhibited a slow release kinetics in serum and relatively quick release in cells, demonstrating their great potential in drug delivery.  相似文献   
995.
The development of noble-metal-free heterogeneous catalysts is promising for selective oxidation of aromatic alcohols; however, the relatively low conversion of non-noble metal catalysts under solvent-free atmospheric conditions hinders their industrial application. Now, a holey lamellar high entropy oxide (HEO) Co0.2Ni0.2Cu0.2Mg0.2Zn0.2O material with mesoporous structure is prepared by an anchoring and merging process. The HEO has ultra-high catalytic activity for the solvent-free aerobic oxidation of benzyl alcohol. Up to 98 % conversion can be achieved in only 2 h, to our knowledge, the highest conversion of benzyl alcohol by oxidation to date. By regulating the catalytic reaction parameters, benzoic acid or benzaldehyde can be selectively optimized as the main product. Analytical characterizations and calculations provide a deeper insight into the catalysis mechanism, revealing abundant oxygen vacancies and holey lamellar framework contribute to the ultra-high catalytic activity.  相似文献   
996.
Osmotic energy, obtained through different concentrations of salt solutions, is recognized as a form of a sustainable energy source. In the past years, membranes derived from asymmetric aromatic compounds have attracted attention because of their low cost and high performance in osmotic energy conversion. The membrane formation process, charging state, functional groups, membrane thickness, and the ion-exchange capacity of the membrane could affect the power generation performance. Among asymmetric membranes, a bipolar membrane could largely promote the ion transport. Here, two polymers with the same poly(ether sulfone) main chain but opposite charges were synthesized to prepare bipolar membranes by a nonsolvent-induced phase separation (NIPS) and spin-coating (SC) method. The maximum power density of the bipolar membrane reaches about 6.2 W m−2 under a 50-fold salinity gradient, and this result can serve as a reference for the design of bipolar membranes for osmotic energy conversion systems.  相似文献   
997.
Cationic framework materials, especially pure inorganic cationic frameworks that can efficiently and selectively capture harmful heavy metal oxyanions from aqueous solution are highly desired yet scarcely reported. Herein, we report the discovery of a 2D cationic aluminum oxyhydroxide, JU-111, which sets a new benchmark for heavy metal oxyanion sorbents, especially for CrVI. Its structure was solved based on 3D electron diffraction tomography data. JU-111 shows fast sorption kinetics (ca. 20 min), high capture capacity (105.4 mg g−1), and broad working pH range (3–10) toward CrVI oxyanions. Unlike layered double hydroxides (LDHs), which are poorly selective in the presence of CO32−, JU-111 retains excellent selectivity for CrVI even under a large excess of CO32−. These superior features coupled with the ultra-low cost and environmentally benign nature make JU-111 a promising candidate for toxic metal oxyanion remediation as well as other potential applications.  相似文献   
998.
Hydrogels enable a variety of applications due to their dynamic networks, structural flexibility, and tailorable functionality. However, their mechanical performances are limited, specifically in the context of cellular mechanobiology. It is also difficult to fabricate robust gel networks with a long-term durability. Thus, a new generation of soft materials showing outstanding mechanical behavior for mechanobiology applications is highly desirable. We combined synthetic biology and supramolecular assembly to prepare elastin-like protein (ELP) organogel fibers with extraordinary mechanical properties. The mechanical performance and stability of the assembled anisotropic proteins are superior to other organo-/hydrogel systems. Bone-derived mesenchymal cells were introduced into the organofiber system for stem-cell lineage differentiation. This approach demonstrates the feasibility of mechanically strong and anisotropic organonetworks for mechanobiology applications and holds great potential for tissue-regeneration translations.  相似文献   
999.
Journal of Radioanalytical and Nuclear Chemistry - The aim of this study was to find trace elements that increase risk of breast cancer based on the deviation of the concentration of trace elements...  相似文献   
1000.
Chuanxiong Rhizoma is a commonly used in traditional Chinese medicine. Chuanxiong Rhizoma is widely distributed in Sichuan province, China, including the cities of Dujiangyan, Pengzhou, Meishan, Qionglai, and Shifang. However, reports on the comparisons of quality of Chuanxiong Rhizoma of different production origins are limited. Therefore, an ultra-HPLC with triple quadrupole MS method was developed for the determination of 20 bioactive components (12 aromatic acids and eight phthalides) in 36 samples from different production origins and further assessed its quality. The contents of these 20 constituents of samples were analyzed by hierarchical cluster analysis and orthogonal partial least squares discrimination analysis; the result indicated that Chuanxiong Rhizoma of different production origins had some differences. Thirteen constituents of quality difference markers were acquired by variable importance for the project. Furthermore, the sum of the contents of these quality difference markers was different from various production origins of Chuanxiong Rhizoma. Meanwhile, Z-ligustilide and senkyunolide A as main constituents of quality difference markers, the rate of various production origins of Chuanxiong Rhizoma was different. This study provides a foundation for the quality assessment of Chuanxiong Rhizoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号