首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   0篇
化学   71篇
力学   7篇
数学   9篇
物理学   32篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   9篇
  2011年   8篇
  2010年   3篇
  2009年   7篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2001年   3篇
  2000年   2篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1985年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1963年   1篇
排序方式: 共有119条查询结果,搜索用时 62 毫秒
71.
National Natural Science Foundation of China (No. 12022113),Henry Fok Foundation for Young Teachers, China (No. 171002), Outstanding Young Talents Support Plan of Shanxi Province, Science and Engineering Research Board (SERB for short), India(No. ECR/2017/002786), UGC-BSR Research Start-Up-Grant, India (No. F.30-356/2017(BSR)), and Senior Research Fellowship from the Council of Scientific and Industrial Research (CSIR for short),India (No. 09/1131(0006)/2017-EMR-I).  相似文献   
72.
The potential of 3D selective laser melting (SLM) technology to produce compact, temperature and pressure stable titanium alloy chromatographic columns is explored. A micro bore channel (0.9 mm I.D. × 600 mm long) was produced within a 5 × 30 × 30 mm titanium alloy (Ti–6Al–4V) cuboid, in form of a double handed spiral. A poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) (BuMA-co-EDMA) monolithic stationary phase was thermally polymerised within the channel for application in reversed-phase high-performance liquid chromatography. The prepared monolithic column was applied to the liquid chromatographic separation of intact proteins and peptides. Peak capacities of 69–76 (for 6–8 proteins respectively) were observed during isothermal separation of proteins at 44 °C which were further increased to 73–77 using a thermal step gradient with programmed temperature from 60 °C to 35 °C using an in-house built direct-contact heater/cooler platform based upon matching sized Peltier thermoelectric modules. Rapid temperature gradients were possible due to direct-contact between the planar metal column and the Peltier module, and the high thermal conductivity of the titanium column as compared to a similar stainless steel printed column. The separation of peptides released from a digestion of E.coli was also achieved in less than 35 min with ca. 40 distinguishable peaks at 210 nm.  相似文献   
73.
The structural and mechanical properties of LnO (Ln=Sm, Eu, Yb) compounds have been investigated using a modified interionic potential theory, which includes the effect of Coulomb screening. We predicted a structural phase transition from NaCl (B1)- to CsCl (B2)-type structure and elastic properties in LnO compounds at very high pressure. The anomalous properties of these compounds have been correlated in terms of the hybridisation of f-electrons of the rare earth ion with conduction band and strong mixing of f-states of lanthanides with the p-orbital of neighbouring chalcogen ion. For EuO, the calculated transition pressure, bulk modulus and lattice parameter are close to the experimental data. The nature of bonds between the ions is predicted by simulating the ion-ion (Ln-Ln and Ln-O) distances at high pressure. The second order elastic constants along with shear modulus and Young's modulus, elastic anisotropy and Poisson's ratio are also presented for these oxides.  相似文献   
74.
To improve the photocatalytic efficiency of TiO(2)-based nanomaterials, we demonstrate a facile, generalized, highly localized reduction approach to the decoration of TiO(2)-polyoxometalate composites with a range of metal nanoparticles including Cu, Ag, Pt, and Au. The synthesis of nanocomposite photococatalysts reported in this study has been achieved by utilizing the unique ability of the TiO(2)-bound PTA (phosphotungstic acid) molecules (a polyoxometalate, POM) to act as a highly localized UV-switchable reducing agent that specifically reduces metal ions to their nanoparticulate forms directly and only onto the TiO(2) surface. This leads to the metal contaminant-free synthesis of TiO(2)-PTA-metal nanocomposites, which is a significant advantage of the proposed approach. The study further demonstrates that polyoxometalates are regenerable photoactive molecules with outstanding electron-transfer ability and the deposition of metal nanoparticles on the TiO(2)-PTA cocatalytic surface can have a dramatic effect on increasing the overall photocatalytic performance of the composite system. Moreover, it is observed that the photococatalytic performance of the TiO(2)-PTA-metal nanoparticles can be fine tuned by choosing the composition of metal nanoparticles in the nanocomposite. Interestingly, the photococatalysts reported here are found to be active under visible and simulated solar-light conditions. The underlying reaction mechanism for enhanced solar-light photococatalysis has been proposed.  相似文献   
75.
Porous graphitic carbon (PGC) particles were functionalized/passivated in situ in packed beds at elevated temperature with neat di-tert-amylperoxide (DTAP) in a column oven. The performance of these particles for high performance liquid chromatography (HPLC) was assayed before and after this chemistry with the following analytes: benzene, toluene, ethyl benzene, n-propyl benzene, n-butyl benzene, p-xylene, phenol, 4-methylphenol, phenetole, 3,5-xylenol, and anisole. After the first functionalization/passivation, the retention factors, k, of these compounds decreased by about 5% and the number of theoretical plates (N) increased by ca. 15%. These values of k then remained roughly constant after a second functionalization/passivation but a further increase in N was noticed. In addition, after each of the reactions, the peak asymmetries decreased by ca. 15%, for a total of ca. 30%. The columns were then subjected twice to methanol at 100°C for 5h at 1 mL/min. After these stability tests, the values of k remained roughly constant, the number of plates increased, which is favorable, and the asymmetries rose and then declined, where they remained below the initial values for the unfunctionalized columns. Functionalized and unfunctionalized particles were characterized by scanning electron microscopy and BET measurements, which showed no difference between the functionalized and unfunctionalized materials, and X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS), where ToF-SIMS suggested some chemical differences between the functionalized and unfunctionalized materials. In particular ToF-SIMS suggested that the expected five-carbon fragments from DTAP exist at higher concentrations on DTAP-functionalized PGC. First principle calculations on model graphitic surfaces suggest that the first addition of a DTAP radical to the surface proceeds in an approximately isothermal or slightly favorable fashion, but that subsequent DTAP additions are then increasingly thermodynamically favorable. Thus, this analysis suggests that the direct functionalization/passivation of PGC with DTAP is plausible. Chemometric analyses of the chromatographic and ToF-SIMS data are also presented.  相似文献   
76.
A one-dimensional model of a linear piezoelectric thin rod is deduced from three-dimensional piezoelectricity by introducing suitable internal constraints and appropriate hypotheses on the electric displacement field.  相似文献   
77.
Pressure-induced structural phase transition of gadolinium monopnictides GdX (X=As and Sb) has been studied theoretically using an inter-ionic potential theory. This method has been found quite satisfactory in case of the pnictides of rare-earth and describes the crystal properties in the framework of rigid-ion model. We have modified the ionic charge so that it may include the Coulomb-screening effect by the delocalization of f electron of the rare-earth ion. The anomalous structural properties of these compounds with many f electrons have been interpreted in terms of the hybridization of f electrons with the conduction band and strong mixing of f states of Gd ion with the p orbital of neighbouring pnictogen ion. Both the compounds are found to undergo from their initial NaCl (B1) structure to body centered tetragonal (BCT) structure at high pressure and agree well with the experimental results. The BCT structure is viewed as distorted CsCl structure and is highly anisotropic with c/a=0.82–0.85. The nature of bonds between the ions is predicted by simulating the ion–ion (Gd–Gd and Gd–X) distance at high pressure. Elastic properties of these compounds have also been studied with their second-order elastic constants.  相似文献   
78.
79.
80.
Applied Biochemistry and Biotechnology - The Institute of Gas Technology has developed a novel, solids-concentrating (SOLCON®) bioreactor to convert a variety of individual or mixed feedstocks...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号