首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1177篇
  免费   46篇
  国内免费   12篇
化学   873篇
晶体学   14篇
力学   13篇
数学   52篇
物理学   283篇
  2021年   13篇
  2020年   17篇
  2019年   20篇
  2018年   11篇
  2017年   10篇
  2016年   20篇
  2015年   16篇
  2014年   45篇
  2013年   54篇
  2012年   60篇
  2011年   67篇
  2010年   48篇
  2009年   43篇
  2008年   58篇
  2007年   69篇
  2006年   59篇
  2005年   58篇
  2004年   65篇
  2003年   53篇
  2002年   34篇
  2001年   28篇
  2000年   28篇
  1999年   14篇
  1998年   12篇
  1997年   13篇
  1996年   21篇
  1995年   5篇
  1994年   23篇
  1993年   19篇
  1992年   25篇
  1991年   13篇
  1990年   13篇
  1989年   16篇
  1988年   9篇
  1987年   14篇
  1986年   11篇
  1985年   15篇
  1984年   10篇
  1983年   12篇
  1982年   11篇
  1981年   12篇
  1980年   7篇
  1979年   10篇
  1978年   9篇
  1977年   15篇
  1976年   9篇
  1975年   6篇
  1974年   9篇
  1973年   5篇
  1972年   6篇
排序方式: 共有1235条查询结果,搜索用时 267 毫秒
51.
[reaction: see text] On treatment of 5-siloxyhexa-1,2,5-trienes with a catalytic amount of W(CO)(6) under photoirradiation, formal Cope rearrangement proceeded to give 2-siloxyhex-1-en-5-ynes in good yield. The electrophilic activation of the allenyl moiety by W(CO)(5) triggers the intramolecular attack of the silyl enol ether in a 6-endo manner to produce a cyclohexenyl tungsten species. Carbon-carbon bond cleavage occurs by electron donation from the anionic W(CO)(5) into the silyloxonium moiety to afford the products with regeneration of the W(CO)(5)(L).  相似文献   
52.
53.
A method for the determination of 3 alpha,7 alpha-dihydroxy-5 beta-cholestanoic acid (DHCA) and 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) in human urine by gas chromatography (GC) in combination with negative ion chemical ionization (NICI) mass spectrometry is described. Unconjugated, glycine- and taurine-conjugated DHCA and THCA labelled with 18O and 2H were used as internal standards. 5 beta-Cholestanoic acids in urine were extracted with a Sep-Pak C18 cartridge, separated into the unconjugated, glycine- and taurine-conjugated fractions by ion-exchange chromatography on piperidinohydroxypropyl Sephadex LH-20 and, following alkaline hydrolysis of conjugated forms, derivatization into the pentafluorobenzyl ester-dimethylethylsilyl ethers. Subsequent resolution of each fraction into DHCA and THCA was attained by GC on a cross-linked 5% phenylmethylsilicone fused-silica capillary column where 5 beta-cholestanoic acids were monitored with a characteristic carboxylate anion [M-181]- in the NICI mode using isobutane as a reagent gas. The method was applied to separation and determination of 5 beta-cholestanoic acids in urine from a patient with Zellweger syndrome and from healthy volunteers.  相似文献   
54.
Phosphorescence studies of a series of facial homoleptic cyclometalated iridium(III) complexes have been carried out. The complexes studied have the general structure Ir(III)(C-N)(3), where (C-N) is a monoanionic cyclometalating ligand: 2-(5-methylthiophen-2-yl)pyridinato, 2-(thiophen-2-yl)-5-trifluoromethylpyridinato, 2,5-di(thiophen-2-yl)pyridinato, 2,5-di(5-methylthiophen-2-yl)pyridinato, 2-(benzo[b]thiophen-2-yl)pyridinato, 2-(9,9-dimethyl-9H-fluoren-2-yl)pyridinato, 1-phenylisoquinolinato, 1-(thiophen-2-yl)isoquinolinato, or 1-(9,9-dimethyl-9H-fluoren-2-yl)isoquinolinato. Luminescence properties of all the complexes at 298 K in toluene are as follows: quantum yields of phosphorescence Phi(p) = 0.08-0.29, emission peaks lambda(max) = 558-652 nm, and emission lifetimes tau = 0.74-4.7 micros. Bathochromic shifts of the Ir(thpy)(3) family [the complexes with 2-(thiophen-2-yl)pyridine derivatives] are observed by introducing appropriate substituents, e.g., methyl, trifluoromethyl, or thiophen-2-yl. However, Phi(p) of the red emissive complexes (lambda(max) > 600 nm) becomes small, caused by a significant decrease of the radiative rate constant, k(r). In contrast, the complexes with the 1-arylisoquinoline ligands are found to have marked red shifts of lambda(max) and very high Phi(p) (0.19-0.26). These complexes are found to possess dominantly (3)MLCT (metal-to-ligand charge transfer) excited states and have k(r) values approximately 1 order of magnitude larger than those of the Ir(thpy)(3) family. An organic light-emitting diode (OLED) device that uses Ir(1-phenylisoquinolinato)(3) as a phosphorescent dopant produces very high efficiency (external quantum efficiency eta(ex) = 10.3% and power efficiency 8.0 lm/W at 100 cd/m(2)) and pure-red emission with 1931 CIE (Commission Internationale de L'Eclairage) chromaticity coordinates (x = 0.68, y = 0.32).  相似文献   
55.
A reversed-phase liquid chromatographic method for the determination of trace amounts of vanadium is described. Metal ions are converted into 2-(8-quinolylazo)-5-N,N-diethylaminophenol chelates in an off-line system. The chelates are injected onto a Zorbax CN column and separated with an aqueous acetonitrile mobile phase containing no chromogenic reagent. Unter these conditions, only vanadium(V) is spectrophotometrically detected at 540 nm among the metal ions Al(III), Ba(II), Ca(II), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ga(III), Hg(II), Mg(II), Mn(II), Ni(II), Pb(II), V(V) and Zn(II). Amounts of 8.0–200 pg of vanadium(V) in 100-μl injections can be determined without interference from 10-fold molar excesses of many cations. At 0.001 a.u.f.s., the detection limit (twice the peak-to-peak noise) for vanadium(V) is 8.0 pg in 100 μl of injected solution and the relative standard deviation at 120 pg of vanadium(V) in a 100-μl injection is 3.5%. The proposed method is applied to the determination of vanadium in rain water and airborne particulates.  相似文献   
56.
57.
Acid-catalyzed intramolecular addition of a hydroxy group to alpha-alkylated vinylsilanes has been studied. Treatment of (Z)-5-alkyl-5-silyl-4-penten-1-ols 1 (R = alkyl) with 5 mol % TiCl(4) in CHCl(3) gave trans-2-alkyl-3-silyltetrahydropyrans 2 exclusively (trans/cis = >99/1 to 97/3). The cyclization efficiency and rate strongly depended on the geometry of the C-C double bond and the silyl group. The use of (E)-vinylsilanes resulted in lower yields with poor cis-selectivity. In the cyclization of (Z)-1 (R = Bu), the silyl group used, the reaction time, and the yield of 2 were as follows: SiMe(2)Ph, 9.5 h, 75%; SiMe(3), 7.5 h, 66%; SiMePh(2), 24 h, 58%; SiMe(2)-t-Bu, 0.75 h, 85%; SiMe(2)Bn, 1.5 h, 78%. This 1,2-silyl-migrative cyclization could be applied to stereoselective synthesis of trisubstituted tetrahydropyrans. The acid-catalyzed reaction of 1-, 2-, or 3-substituted (Z)-5-silyl-4-nonen-1-ols 8 gave r-2,t-3,c-6-, r-2,t-3,t-5-, or r-2,t-3,c-4-trisubstituted tetrahydropyrans with high diastereoselectivity, respectively. (Z)-4-Alkyl-4-silyl-3-buten-1-ols 5 as well as 1 underwent the 1,2-silyl-migrative cyclization to give 2-alkyl-3-silyltetrahydrofurans 6 with high trans-selectivity. This silicon-directed cyclization was also available for the stereoselective synthesis of tri- and tetrasubstituted tetrahydrofurans.  相似文献   
58.
3-tert-Butyldimethylsilyloxyalk-2-enylsulfonium salts, generated in situ from the reaction of alpha,beta-enones with dimethyl sulfide in the presence of TBSOTf, underwent a novel nucleophilic substitution with allylindiums to give silyl enol ethers of delta,epsilon-alkenyl ketones in good yields, which correspond to formal Michael addition products. In a similar manner, 1,4-propargylation of propargylindiums onto the sulfonium salts produced the corresponding silyl enol ethers of delta,epsilon-alkynyl ketones in good yields. Organoindium reagents derived from gamma-substituted propargyl bromide and indium afforded the corresponding silyl enol ethers of beta-allenyl ketones in good yields. The reaction proceeds via an addition-substitution mechanism involving the formation of allylic sulfonium salts. The presence of the intermediate sulfonium salt was confirmed by observation of the low-temperature (1)H NMR spectra.  相似文献   
59.
Reactions of [Ni(tren)(H(2)O)(2)]X(2) (tren = tris(2-aminoethyl)amine; X = Cl (1a), Br (1b); X(2) = SO(4) (1c)) with mannose-type aldoses, having a 2,3-cis configuration (D-mannose and L-rhamnose), afforded {bis(N-aldosyl-2-aminoethyl)(2-aminoethyl)amine}nickel(II) complexes, [Ni(N,N'-(aldosyl)(2)-tren)]X(2) (aldosyl = D-mannosyl, X = Cl (2a), Br (2b), X(2) = SO(4) (2c); aldosyl = L-rhamnosyl, X(2) = SO(4) (3c)). The structure of 1c was confirmed by X-ray crystallography to be a mononuclear [Ni(II)N(4)O(2)] complex with the tren acting as a tetradentate ligand (1c.2H(2)O: orthorhombic, Pbca, a = 15.988(2) ?, b = 18.826(4) ?, c = 10.359(4) ?, V = 3118 ?(3), Z = 8, R = 0.047, and R(w) = 0.042). Complexes 2a,c and 3c were characterized by X-ray analyses to have a mononuclear octahedral Ni(II) structure ligated by a hexadentate N-glycoside ligand, bis(N-aldosyl-2-aminoethyl)(2-aminoethyl)amine (2a.CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 16.005(3) ?, b = 20.095(4) ?, c = 8.361(1) ?, V = 2689 ?(3), Z = 4, R = 0.040, and R(w) = 0.027. 2c.3CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 14.93(2) ?, b = 21.823(8) ?, c = 9.746(2) ?, V = 3176 ?(3), Z = 4, R = 0.075, and R(w) = 0.080. 3c.3CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 14.560(4) ?, b = 21.694(5) ?, c = 9.786(2) ?, V = 3091 ?(3), Z = 4, R = 0.072, and R(w) = 0.079). The sugar part of the complex involves novel intramolecular sugar-sugar hydrogen bondings around the metal center. The similar reaction with D-glucose, D-glucosamine, and D-galactosamine, having a 2,3-trans configuration, resulted in the formation of a mono(sugar) complex, [Ni(N-(aldosyl)-tren)(H(2)O)(2)]Cl(2) (aldosyl = D-glucosyl (4b), 2-amino-2-deoxy-D-glucosyl (5a), and 2-amino-2-deoxy-D-galactosyl (5b)), instead of a bis(sugar) complex. The hydrogen bondings between the sugar moieties as observed in 2 and 3 should be responsible for the assembly of two sugar molecules on the metal center. Reactions of tris(N-aldosyl-2-aminoethyl)amine with nickel(II) salts gave the tris(sugar) complexes, [Ni(N,N',N"-(aldosyl)(3)-tren)]X(2) (aldosyl = D-mannosyl, X = Cl (6a), Br (6b); L-rhamnosyl, X = Cl (7a), Br (7b); D-glucosyl, X = Cl (9); maltosyl, X = Br (10); and melibiosyl, X = Br (11)), which were assumed to have a shuttle-type C(3) symmetrical structure with Delta helical configuration for D-type aldoses on the basis of circular dichroism and (13)C NMR spectra. When tris(N-rhamnosyl)-tren was reacted with NiSO(4).6H(2)O at low temperature, a labile neutral complex, [Ni(N,N',N"-(L-rhamnosyl)(3)-tren)(SO(4))] (8), was successfully isolated and characterized by X-ray crystallography, in which three sugar moieties are anchored only at the N atom of the C-1 position (8.3CH(3)OH.H(2)O: orthorhombic, P2(1)2(1)2(1), a = 16.035(4) ?, b = 16.670(7) ?, c = 15.38(1) ?, V = 4111 ?(3), Z = 4, R = 0.084, and R(w) = 0.068). Complex 8 could be regarded as an intermediate species toward the C(3) symmetrical tris(sugar) complexes 7, and in fact, it was readily transformed to 7b by an action of BaBr(2).  相似文献   
60.
Stereoblock poly(lactic acid) consisting of D- and L-lactate stereosequences can be successfully synthesized by solid-state polycondensation of a 1:1 mixture of poly(L-lactic acid) and poly(D-lactic acid). In the first step, melt-polycondensation of L- and D-lactic acids is conducted to synthesize poly(L-lactic acid) and poly(D-lactic acid) with a medium-molecular-weight, respectively. In the next step, these poly(L-lactic acid) and poly(D-lactic acid) are melt-blended in 1:1 ratio to allow formation of their stereocomplex. In the last step, this melt-blend is subjected to solid-state polycondensation at temperature where the dehydrative condensation is allowed to promote chain extension in the amorphous phase with the stereocomplex crystals preserved. Finally, stereoblock poly(lactic acid) having high-molecular-weight is obtained. The stereoblock poly(lactic acid) synthesized by this way shows a higher melting temperature in consequence of the controlled block lengths and the resulting higher-molecular-weight. The product characterization as well as the optimization of the polymerization conditions is described. Changes in M(w) of stereoblock poly(lactic acid) (sb-PLA) as a function of the reaction time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号