首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Stereoblock poly(lactic acid) (sb-PLA), consisting of poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) in a blocky sequence, can successfully be synthesized by solid-state polycondensation of a stereocomplexed mixture of PLLA and PDLA. First, the melt polyconden-sation of L- and D-lactic acids is conducted to obtain PLLA and PDLA with medium molecular weights. Then, both polymers are melt-blended to easily form the stereocomplex. The resulting stereocomplexed mixture (melt-blend) is subjected to solid-state polycondensation for chain extension. The molecular weight (Mw) of the resultant sb-PLA is strongly affected by the lactide/oligomer content in the melt-blend, which is determined by the melt-blending conditions, because it is directly correlated with the polymer crystallinity of the polycondensation products.  相似文献   

2.
Stereoblock poly(lactic acid) (sb-PLA) is incorporated into a 1:1 polymer blend system of poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) that has a high molecular weight to study its addition effect on the stereocomplex (sc) formation of PLLA and PDLA. The ternary polymer blend films are first prepared by casting polymer solutions of sb-PLA, PLLA, and PDLA with different compositions. Upon increasing the content of sb-PLA in the blend films the sc crystallization is driven to a higher degree, while the formation of homo-chiral (hc) crystals is decreased. Lowering the molecular weight of the incorporated sb-PLA effectively increases the sc formation. Consequently, it is revealed that sb-PLA can work as a compatibilizer to improve the poor sc formation in the polymer blend of PLLA and PDLA.  相似文献   

3.
D-Lactic acid was synthesized by the fermentation of rice starch using microorganisms. Two species: Lactobacillus delbrueckii and Sporolactobacillus inulinus were found to be active in producing D-lactic acid of high optical purity after an intensive screening test for D-lactic acid bacteria using glucose as substrate. Rice powder used as the starch source was hydrolyzed with a combination of enzymes: alpha-amylase, beta-amylase, and pullulanase to obtain rice saccharificate consisting of maltose as the main component. Its average gross yield was 82.5%. Of the discovered D-lactic acid bacteria, only Lactobacillus delbrueckii could ferment both maltose and the rice saccharificate. After optimizing the fermentation of the rice saccharificate using this bacterium, pilot scale fermentation was conducted to convert the rice saccharificate into D-lactic acid with a D-content higher than 97.5% in a yield of 70%. With this yield, the total yield of D-lactic acid from brown rice was estimated to be 47%, which is almost equal to the L-lactic acid yield from corn. The efficient synthesis of D-lactic acid can open a way to the large scale application of high-melting poly(lactic acid) that is a stereocomplex of poly(L-lactide) and poly(D-lactide). Schematic representation of the production of D-lactic acid starting from brown rice as described here.  相似文献   

4.
Simultaneous solid‐state polycondensation (SSP) of the powdery prepolymers of poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) can produce entire stereocomplexed poly(lactic acid)s (sc‐PLA) with high molecular weight and can be an alternative synthetic route to sc‐PLA. Ordinary melt polycondensations of L ‐ and D ‐lactic acids gave the PLLA and PDLA prepolymers having medium molecular weight which were pulverized for blending in 1:1 ratio. The resultant powder blends were then subjected to SSP at 130–160 °C for 30 h under a reduced pressure of 0.5 Torr. Some of the products thus obtained attained a molecular weight (Mw) as high as 200 kDa, consisting of stereoblock copolymer of PLLA and PDLA. A small amount of the stereocomplex should be formed in the boundaries of the partially melted PLLA and PDLA where the hetero‐chain connection is induced to generate the blocky components. The resultant SSP products showed predominant stereocomplexation after their melt‐processing in the presence of the stereoblock components in spite of containing a small amount of racemic sequences in the homo‐chiral PLLA and PDLA chains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3714–3722, 2008  相似文献   

5.
Enzymatic transformations into cyclic oligomers were carried out with the objective of developing chemical recycling of poly(lactic acid)s, such as poly(D,L-lactic acid) (PDLLA), poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA), which are typical biodegradable polymers. They were degraded by lipase in an organic solvent to produce the corresponding cyclic oligomer with a molecular weight of several hundreds. PDLLA (with a Mw of 84,000) was quantitatively transformed into cyclic oligomers by lipase RM (Lipozyme RM IM) in chloroform/hexane at 60 degrees C. PLLA (with a Mw of 120,000) was transformed into cyclic oligomer by lipase CA (Novozym 435) at a higher temperature of 100 degrees C in o-xylene. The oligomer structure was identified by 1H and 13C NMR spectroscopy and MALDI-TOF (matrix assisted laser desorption/ionization-time-of-flight) mass spectrometry.  相似文献   

6.
The higher order structure of stereocomplex‐type poly(lactic acid) melt‐spun fibers of an equimolar blend of poly(L ‐lactic acid) and poly(D ‐lactic acid) was analyzed with wide‐angle X‐ray diffraction (WAXD) and birefringence measurements. Two different crystalline structures were observed in the fibers: α‐form homocrystals and stereocomplex crystals. The weight fractions of the two crystals were estimated with the WAXD integrated intensity data. The crystalline orientation factors were obtained from the WAXD measurements. Well‐oriented homocrystals formed during a drawing process at the crystallization temperature of the homocrystal. Drawing above this temperature caused the stereocomplex crystal to be formed. The crystalline orientation tended to be lower with increasing drawing temperatures. Through the combination of the intrinsic birefringence and the fractions of the α‐form homocrystals and stereocomplex crystals, the birefringence of the amorphous phase was evaluated. The amorphous birefringence stayed positive and decreased with increasing drawing temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 218–228, 2007  相似文献   

7.
Acid hydrolysis of a stereoblock poly(methyl methacrylate) sample leads to a mixture of isotactic and syndiotactic poly(methacrylic acid) which can be separated by electrophoresis. The experiment confirms the stereochemical identity between the so-called “stereoblock” poly(methyl methacrylate) and the stereocomplex which syndiotactic and isotactic poly(methyl methacrylate) form in the ratio 2:1. A possible mechanism of replica polymerization is suggested to account for this effect.  相似文献   

8.
董军  白威  黄冬玲  熊成东 《合成化学》2015,23(12):1111-1115
首次以高分子量的聚(L-乳酸-co-乙醇酸)(PLLGA)和D-聚乳酸(PDLA)[m(PLLGA) : m(PDLA)=3:1, c 50 mL·g-1]为原料,氯仿为溶剂,等体积的甲醇为沉淀剂,于50 ℃蒸发4 h形成了PLLGA和PDLA的立构复合物(sc-PLA),其结构和性能经XRD, DSC和TGA表征。结果表明:sc-PLA的结晶度达96.2%,热失重5%温度为342 ℃(PLLGA为304 ℃)。  相似文献   

9.
Poly(lactide)s [i.e. poly(lactic acid) (PLA)] and lactide copolymers are biodegradable, compostable, producible from renewable resources, and nontoxic to the human body and the environment. They have been used as biomedical materials for tissue regeneration, matrices for drug delivery systems, and alternatives for commercial polymeric materials to reduce the impact on the environment. Since stereocomplexation or stereocomplex formation between enantiomeric PLA, poly(L-lactide) [i.e. poly(L-lactic acid) (PLLA)] and poly(D-lactide) [i.e. poly(D-lactic acid) (PDLA)] was reported in 1987, numerous studies have been carried out with respect to the formation, structure, properties, degradation, and applications of the PLA stereocomplexes. Stereocomplexation enhances the mechanical properties, the thermal-resistance, and the hydrolysis-resistance of PLA-based materials. These improvements arise from a peculiarly strong interaction between L-lactyl unit sequences and D-lactyl unit sequences, and stereocomplexation opens a new way for the preparation of biomaterials such as hydrogels and particles for drug delivery systems. It was revealed that the crucial parameters affecting stereocomplexation are the mixing ratio and the molecular weight of L-lactyl and D-lactyl unit sequences. On the other hand, PDLA was found to form a stereocomplex with L-configured polypeptides in 2001. This kind of stereocomplexation is called "hetero-stereocomplexation" and differentiated from "homo-stereocomplexation" between L-lactyl and D-lactyl unit sequences. This paper reviews the methods for tracing PLA stereocomplexation, the methods for inducing PLA stereocompelxation, the parameters affecting PLA stereocomplexation, and the structure, properties, degradation, and applications of a variety of stereocomplexed PLA materials.  相似文献   

10.
谢兰  熊玉竹 《高分子科学》2017,35(6):773-781
Classic Avrami model and its modifications have found diverse applications in describing the thermal and phase behaviors of inorganic metals and organic polymers.The direct introduction of classic Avrami equation to offer quantitative analyses of crystallization kinetic parameters for enantiomeric poly(lactic acid) (PLA) blends may,however,lead to contradictory conclusions.As revealed by this study,during the characterization of isothermal melt and cold crystallization for stereocomplex PLA containing equal-weight poly(L-lactic acid) and poly(D-lactic acid),the kinetic parameters yielded by Avrami equation are not in line with the classic crystallization hypotheses or the direct morphological observations.The underlying mechanisms,to some extent,lie in the generation of stereocomplex crystals (SCs) during the cooling/heating which affects the subsequent crystallization dynamics.The huge gap between the melting enthalpies of 100% crystalline SCs (142 J/g) and homo-crystals (HCs,93 J/g) is most likely responsible for the confusing kinetic parameters acquired from the deduction of Avrami equation,which is based on the integration of enthalpies as a function of crystallization time.This prompts for great care that the classic Avrami equation is not applicable to accurately describe the crystallization kinetics of stereocomplex PLA,given the generation of SCs prior to crystallization and the coexistence of HCs and SCs during crystallization.  相似文献   

11.
A series of aliphatic–aromatic multiblock copolyesters consisting of poly(ethylene‐co‐1,6‐hexene terephthalate) (PEHT) and poly(L ‐lactic acid) (PLLA) were synthesized successfully by chain‐extension reaction of dihydroxyl terminated PEHT‐OH prepolymer and dihydroxyl terminated PLLA‐OH prepolymer using toluene‐2,4‐diisoyanate as a chain extender. PEHT‐OH prepolymers were prepared by two step reactions using dimethyl terephthalate, ethylene glycol, and 1,6‐hexanediol as raw materials. PLLA‐OH prepolymers were prepared by direct polycondensation of L ‐lactic acid in the presence of 1,4‐butanediol. The chemical structures, the molecular weights and the thermal properties of PEHT‐OH, PLLA‐OH prepolymers, and PEHT‐PLLA copolymers were characterized by FTIR, 1H NMR, GPC, TG, and DSC. This synthetic method has been proved to be very efficient for the synthesis of high‐molecular‐weight copolyesters (say, higher than Mw = 3 × 105 g/mol). Only one glass transition temperature was found in the DSC curves of PEHT‐PLLA copolymers, indicating that the PLLA and PEHT segments had good miscibility. TG curves showed that all the copolyesters had good thermal stabilities. The resulting novel aromatic–aliphatic copolyesters are expected to find a potential application in the area of biodegradable polymer materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5898–5907, 2009  相似文献   

12.
Photocrosslinked nanogels with a hydrophobic core and hydrophilic shell are successfully fabricated with the goal of obtaining a biocompatible and biodegradable drug carrier for hydrophobic anticancer drugs. These nanogels are composed of amphiphilic triblock copolymers, poly(D,L-lactic acid)/poly(ethylene glycol)/poly(D,L-lactic acid) (PLA-PEG-PLA), with acrylated groups at the end of the PLA segments. The copolymers are synthesized by ring-opening polymerization and possess a low CMC (49.6 mg x L(-1)), which easily helps to form micelles by self-assembly. The acrylated end groups allow the micelles to be photocrosslinked by ultraviolet irradiation, which turn the micelles into nanogels. These nanogels exhibit excellent stability as a suspension in aqueous media at ambient temperature as compared to the micelles. Moreover, the size of the nanogels is easily manipulated in a range of 150 to 250 nm by changing the concentration of crosslinkers, e.g., ethylene glycol dimethacrylate, and ultraviolet light irradiation time. The nanogels achieve a high encapsulation efficiency and offer a steady and long-term release mechanism for the hydrophobic anticancer drug, CPT. It shows that these nanogels are useful for a hydrophobic anticancer drug-carrier system. [pictures: see text] Formation of the PLA-PEG-PLA nanogels.  相似文献   

13.
The demand for injectable dermal filler has unde rgone significant growth with the rapid development of the beauty industry.Poly(lactic acid)(PLA) as a benefit of excellent biocompatibility and long-term promotion of collagen regeneration has been favored as a commonly used filler.However,the effects of chirality and particle size of PLA on the efficacy of dermal filler have not been studied.In this study,we prepared three kinds of microspheres(MSs) consisting of poly(D-lactic acid)(PDLA MS),poly(L-lactic acid)(PLLA MS),or meso-PLA(PDLLA MS)at 5,10 and 20 μmto reveal the different biological functions as dermal filler.Following intradermal injection into guinea pig,it was found that PLLA MS induced the slightest inflammation,and the level of pro-inflammatory cytokine IL-1β induced by PLLA MS is only 0.3 or 0.7-fold of that induced by PDLA or PDLLA MS,respectively.More importantly,PLLA MS significantly stimulated the regeneration of collagen,which was 1.4 or 1.1 times higher than those stimulated by PDLA MS or PDLLA MS,respectively.The size of PLA MSs did not affect the levels of inflammation and collagen regeneration.The results confirmed the superiority of PLLA as a dermal filler.  相似文献   

14.
In this communication, we reported the sequence variation of stereocomplex crystals (SC) and homocrystals (HC) in poly(l ‐lactic acid)/poly(d ‐lactic acid) (PLLA/PDLA) racemic blends melts. It was evidenced that the emerging sequence of the SC and HC depends on the hydrogen bond formation in the melt, and the hydrogen bond is required for the stereocomplexation in PLLA/PDLA racemic blend. First, by combining a commercial fast‐scan chip‐calorimeter (Flash DSC 1) and micro‐FTIR, we found that hydrogen bonds were formed in the melt during cooling at 2.5 K/s, but not at 3000 K/s. Second, annealing the melt without hydrogen bonds at 100 °C led to HC emerging first, while annealing the melt with hydrogen bonds resulted in SC emerging at first. Third, the crystallization kinetics of the racemic blends after cooling to predefined Tc at 2.5 or 3000 K/s further verified that the hydrogen bonding can be inhibited effectively by cooling the racemic blends isotropic melt at fast enough rate. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 83–88  相似文献   

15.
(Lactic acid, ethylene glycol, malonic or succinic acid) copolymers [(LA-EG-MA) and (LA-EG-SA) copolymers] were synthesized with different monomer feed ratios by direct polycondensation. The copolymers were characterized in terms of various properties such as acid value and number average molecular weight. The aerobic biodegradation under controlled composting conditions of commercially available and laboratory synthesized poly(l-lactic acid) (PLA) and synthesized copolymers was carried out according to ISO 14855-1:2005. The biodegradability of tested materials was found to be strongly dependent on the lactic acid content, ranging from 94% (method A) and 104% (method B) to 43% (method A) and 46% (method B) over the 110-days of the 50 °C composting.  相似文献   

16.
Direct melt/solid polycondensation of lactic acid(LA)was carried out to obtain high molecular weight poly(lactic acid)(PLA)by a process using various catalysts in the first-step melt polycondensation,and followed solid polycondensation by using p-toulenesulfonic acid monohydrate(TSA)as the catalyst in the second step.Effects of various catalysts and reaction temperature on the molecular weight and crystallinity of resulting PLA polymers were examined.It was shown that SnCl_2·2H_2O/TSA,SnCl_2·2H_2O/succin...  相似文献   

17.
方征平 《高分子科学》2010,28(3):405-415
<正>Biodegradable aliphatic/aromatic copolyesters,poly(butylene terephthalate-co-lactate)(PBTL) were prepared via direct melt polycondensation of terephthalic acid(TPA),1,4-butanediol(BDO) and poly(L-lactic acid) oligomer(OLLA). The effects of polymerization time and temperature,as well as aliphatic/aromatic moiety ratio on the physical and thermal properties were investigated.The largest molecular weight of the copolyesters was up to 64100 with molecular weight distribution index of 2.09 when the polycondensation was carried out at 230℃for 6 h.DSC,XRD,DMA and TGA analysis clearly indicated that the degree of crystallinity,glass-transition temperature,melting point,decomposition temperature, tensile strength,elongation and Young's modulus were influenced by the ratio between TPA and OLLA in the final copolyesters.Hydrolytic degradation results demonstrated that the incorporation of biodegradable lactate moieties into the aromatic polyester could efficiently improve hydrolytic degradability of the copolymer even though it still had many aromatic units in the main chains.  相似文献   

18.
首先,采用乳酸为引发剂,辛酸亚锡为催化剂,引发丙交酯开环聚合制得具有缩聚活性的L-聚乳酸和D-聚乳酸;然后,将两者熔融共混后进行固相缩聚,合成了一系列立体嵌段聚乳酸。采用核磁共振(NMR)、凝胶渗透色谱(GPC)及差示扫描量热仪(DSC)分析了产物的链结构、重均分子量、热性能,并探讨了均相晶体和立体复合晶体共存情况下的固相缩聚机理。结果表明,固相缩聚产物分子量增长的适宜反应条件为:反应时间30h,较低的催化剂含量,L-聚乳酸质量分数为80%。L-聚乳酸和D-聚乳酸共混物较低的初始立体复合晶体结晶度有利于后续固相缩聚过程中产物分子量的增长;固相缩聚不仅发生在异链之间,而且也发生在同链之间。  相似文献   

19.
Linear and four‐armed poly(l ‐lactide)‐block‐poly(d ‐lactide) (PLLA‐b‐PDLA) block copolymers are synthesized by ring‐opening polymerization of d ‐lactide on the end hydroxyl of linear and four‐armed PLLA prepolymers. DSC results indicate that the melting temperature and melting enthalpies of poly (lactide) stereocomplex in the copolymers are obviously lower than corresponding linear and four‐armed PLLA/PDLA blends. Compared with the four‐armed PLLA‐b‐PDLA copolymer, the similar linear PLLA‐b‐PDLA shows higher melting temperature (212.3 °C) and larger melting enthalpy (70.6 J g?1). After these copolymers blend with additional neat PLAs, DSC, and WAXD results show that the stereocomplex formation between free PLA molecular chain and enantiomeric PLA block is the major stereocomplex formation. In the linear copolymer/linear PLA blends, the stereocomplex crystallites (sc) as well as homochiral crystallites (hc) form in the copolymer/PLA cast films. However, in the four‐armed copolymer/linear PLA blends, both sc and hc develop in the four‐armed PLLA‐b‐PDLA/PDLA specimen, which means that the stereocomplexation mainly forms between free PDLA molecule and the inside PLLA block, and the outside PDLA block could form some microcrystallites. Although the melting enthalpies of stereocomplexes in the blends are smaller than that of neat copolymers, only two‐thirds of the molecular chains participate in the stereocomplex formation, and the crystallization efficiency strengthens. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1560–1567  相似文献   

20.
A kind of biodegradable material, poly(ɛ-caprolactone-co-lactic acid) [P(CL-co-LA)] was synthesized via the direct melting polycondensation of lactic acid (LA) and ɛ-caprolactone (CL). The influences of the polycondensation time, and the catalyst type on the intrinsic viscosity of P(CL-co-LA) were also investigated. The results indicate that P(CL-co-dl-LA), with an intrinsic viscosity of 0.4733 dL/g, can be prepared by direct melting polycondensation with the molar ratio LA/CL = 3:7 at 180°C and 70 Pa for 12 h, using 0.5% (mass fraction) of SnCl2 as the catalyst. Compared with lactide ring-opening polycondensation (ROP), the direct melting polycondensation of LA and CL is more practicable and simple. Translated from Journal of South China University of Technology, 2006, 34(7): 7–11 (in Chinese)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号