首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1309篇
  免费   98篇
  国内免费   6篇
化学   1100篇
晶体学   10篇
力学   14篇
数学   110篇
物理学   179篇
  2023年   11篇
  2022年   10篇
  2021年   30篇
  2020年   38篇
  2019年   54篇
  2018年   36篇
  2017年   27篇
  2016年   53篇
  2015年   45篇
  2014年   68篇
  2013年   74篇
  2012年   94篇
  2011年   109篇
  2010年   50篇
  2009年   39篇
  2008年   87篇
  2007年   69篇
  2006年   81篇
  2005年   81篇
  2004年   77篇
  2003年   51篇
  2002年   50篇
  2001年   16篇
  2000年   14篇
  1999年   15篇
  1998年   9篇
  1997年   16篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   3篇
  1992年   7篇
  1991年   3篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1981年   6篇
  1980年   4篇
  1979年   10篇
  1978年   6篇
  1977年   8篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1968年   2篇
排序方式: 共有1413条查询结果,搜索用时 406 毫秒
71.
The C3‐symmetric propeller‐chiral compounds (P,P,P)‐ 1 and (M,M,M)‐ 1 with planar π‐cores perpendicular to the C3‐axis were synthesized in optically pure states. (P,P,P)‐ 1 possesses two distinguishable propeller‐chiral π‐faces with rims of different heights named the (P/L)‐face and (P/H)‐face. Each face is configurationally stable because of the rigid structure of the helicenes contained in the π‐core. (P,P,P)‐ 1 formed dimeric aggregates in organic solutions as indicated by the results of 1H NMR, CD, and UV/Vis spectroscopy and vapor pressure osmometry analyses. The (P/L)/(P/L) interactions were observed in the solid state by single‐crystal X‐ray analysis, and they were also predominant over the (P/H)/(P/H) and (P/L)/(P/H) interactions in solution, as indicated by the results of 1H and 2D NMR spectroscopy analyses. The dimerization constant was obtained for a racemic mixture, which showed that the heterochiral (P,P,P)‐ 1 /(M,M,M)‐ 1 interactions were much weaker than the homochiral (P,P,P)‐ 1 /(P,P,P)‐ 1 interactions. The results indicated that the propeller‐chiral (P/L)‐face interacts with the (P/L)‐face more strongly than with the (P/H)‐face, (M/L)‐face, and (M/H)‐face. The study showed the π‐face‐selective aggregation and π‐face chiral recognition of the configurationally stable propeller‐chiral molecules.  相似文献   
72.
73.
Encapsulation of chiral guests in the dissymmetric capsule 1?4 BF4 formed diastereomeric supramolecular complexes G ? 1?4 BF4 ( G : guest). When chiral guests 2 a – q were encapsulated within the dissymmetric space of the self‐assembled capsule 1?4 BF4, circular dichroism (CD) was observed at the absorption bands that are characteristic of the π–π* transition of the bipyridine moiety of the capsule, which suggests that the P and M helicities of the capsule are biased by the chiral guest complexation. The P helicity of diastereomeric complex (S)‐ 2 l ? 1?4 BF4 was determined to be predominant, based on CD exciton coupling theory and DFT calculations. The diastereoselectivity was highly influenced by the ester substituents, such that benzyl ester moieties were good for improving the diastereoselectivity. A diastereomeric excess of 98 % was achieved upon the complexation of 2 j . The relative enthalpic and entropic components for the distereoselectivity were obtained from a van’t Hoff plot. The enthalpic components were linearly correlated with the substituent Hammett parameters (σp+). The electron‐rich benzyl ester moieties generated donor–acceptor π–π stacking interactions with the bipyridine moiety, which resulted in a significant difference in energy between the predominant and subordinate diastereomeric complexes.  相似文献   
74.
Our goal was to obtain the X‐ray crystal structure of the glycosylated chemokine Ser‐CCL1. Glycoproteins can be hard to crystallize because of the heterogeneity of the oligosaccharide (glycan) moiety. We used glycosylated Ser‐CCL1 that had been prepared by total chemical synthesis as a homogeneous compound containing an N‐linked asialo biantennary nonasaccharide glycan moiety of defined covalent structure. Facile crystal formation occurred from a quasi‐racemic mixture consisting of glycosylated L ‐protein and non‐glycosylated‐D ‐protein, while no crystals were obtained from the glycosylated L ‐protein alone. The structure was solved at a resolution of 2.6–2.1 Å. However, the glycan moiety was disordered: only the N‐linked GlcNAc sugar was well‐defined in the electron density map. A racemic mixture of the protein enantiomers L ‐Ser‐CCL1 and D ‐Ser‐CCL1 was also crystallized, and the structure of the true racemate was solved at a resolution of 2.7–2.15 Å. Superimposition of the structures of the protein moieties of L ‐Ser‐CCL1 and glycosylated‐L ‐Ser‐CCL1 revealed there was no significant alteration of the protein structure by N‐glycosylation.  相似文献   
75.
In a mixed‐valence polyoxometalate, electrons are usually delocalized within the cluster anion because of low level of inter‐cluster interaction. Herein, we report the structure and electrical properties of a single crystal in which mixed‐valence polyoxometalates were electrically wired by cationic π‐molecules of tetrathiafulvalene substituted with pyridinium. Electron‐transport characteristics are suggested to represent electron hopping through strong interactions between cluster and cationic π‐molecules.  相似文献   
76.
Protein kinase C (PKC) isozymes play central roles in signal transduction on the cell surface and could serve as promising therapeutic targets of intractable diseases like cancer, Alzheimer's disease, and acquired immunodeficiency syndrome (AIDS). Although natural PKC ligands like phorbol esters, ingenol esters, and teleocidins have the potential to become therapeutic leads, most of them are potent tumor promoters in mouse skin. By contrast, bryostatin‐1 (bryo‐1) isolated from marine bryozoan is a potent PKC activator with little tumor‐promoting activity. Numerous investigations have suggested bryo‐1 to be a promising therapeutic candidate for the above intractable diseases. However, there is a supply problem of bryo‐1 both from natural sources and by organic synthesis. Recent approaches on the synthesis of bryo‐1 have focused on its simplification, without decreasing the ability to activate PKC isozymes, to develop new medicinal leads. Another approach is to use the skeleton of natural PKC ligands to develop bryo‐1 surrogates. We have recently identified 10‐methyl‐aplog‐1 ( 26 ), a simplified analog of tumor‐promoting aplysiatoxin (ATX), as a possible therapeutic lead for cancer. This review summarizes recent investigations on the simplification of natural PKC ligands, bryo‐1 and ATX, to develop potential medicinal leads.  相似文献   
77.
Encapsulating metal nanoclusters into zeolites combines the superior catalytic activity of the nanoclusters with high stability and unique shape selectivity of the crystalline microporous materials. The preparation of such bifunctional catalysts, however, is often restricted by the mismatching in time scale between the fast formation of nanoclusters and the slow crystallization of zeolites. We herein demonstrate a novel strategy to overcome the mismatching issue, in which the crystallization of zeolites is expedited so as to synchronize it with the rapid formation of nanoclusters. The concept was demonstrated by confining Pt and Sn nanoclusters into a ZSM-5 (MFI) zeolite in the course of its crystallization, leading to an ultrafast, in situ encapsulation within just 5 min. The Pt/Sn-ZSM-5 exhibited exceptional activity and selectivity with stability in the dehydrogenation of propane to propene. This method of ultrafast encapsulation opens up a new avenue for designing and synthesizing composite zeolitic materials with structural and compositional complexity.  相似文献   
78.
Various biological behaviors are fueled by “respiration”, which is an example of catabolism. So far, we have reported various self‐oscillating soft materials exhibiting bioinspired dynamic movements. These autonomous polymer systems are driven by the Belousov–Zhabotinsky (BZ) reaction, which is analogous to the tricarboxylic acid (TCA) cycle that is an integral part of respiration. However, in the BZ reaction, the external addition of an oxidizing agent is necessary to initiate the oxidation process, which is realized by intracellular moieties such as ubiquinone in living systems. Herein, we realized self‐oscillating micelles that are driven without the external addition of an oxidizing agent. This was achieved by embedding the oxidizing source into the structure of the self‐oscillating AB diblock copolymers. This strategy introduces a new function equivalent to intracellular oxidizing moieties, and is useful for the design of completely autonomous bioinspired materials.  相似文献   
79.
Flapping fluorophores (FLAP) with a flexible 8π ring are rapidly gaining attention as a versatile photofunctional system. Here we report a highly photostable “flapping peryleneimide” with an unprecedented fluorogenic mechanism based on a bent‐to‐planar conformational change in the S1 excited state. The S1 planarization induces an electronic configurational switch, almost quenching the inherent fluorescence (FL) of the peryleneimide moieties. However, the FL quantum yield is remarkably improved with a prolonged lifetime upon a slight environmental change. This fluorogenic function is realized by sensitive π‐conjugation design, as a more π‐expanded analogue does not show the planarization dynamics. With strong visible‐light absorption, the FL lifetime response synchronized with the flexible flapping motion is useful for the latest optical techniques such as FL lifetime imaging microscopy (FLIM).  相似文献   
80.
Molecular functions depend on conformations and motions of the corresponding molecular species. An air–water interface is a suitable asymmetric field for the control of molecular conformations and motions under a small applied force. In this work, double‐paddled binuclear PtII complexes containing pyrazole rings linked by alkyl spacers were synthesized and their orientations and emission properties dynamically manipulated at the air–water interface. The complexes emerge from water with concurrent variation of interface orientation of the planes of the PtII complexes from perpendicular to parallel during mechanical compression suggesting a unique ‘submarine emission‘. Phosphorescence of the complexes is quenched at the air–water interface prior to monolayer formation with intensities subsequently rapidly increasing during monolayer compression. These results indicate that asymmetric reactions and motions might be controlled by applying mechanical force at the air–water interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号