首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
化学   53篇
物理学   3篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   5篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
排序方式: 共有56条查询结果,搜索用时 58 毫秒
21.
Unusual dimers with wide interplanar separations, that is, very long bonds with d(D) approximately 3.05 A, are common to the spontaneous self-association of various organic pi-radicals in solution and in the crystalline solid state, independent of whether they are derived from negatively charged anion radicals of planar electron acceptors (TCNE-*, TCNQ-*, DDQ-*, CA-*), positively charged biphenylene cation-radical (OMB+*), or neutral phenalene radical (PHEN*). All dimeric species are characterized by intense absorption bands in the near-IR region that are diagnostic of the charge-transfer transitions previously identified with intermolecular associations of various electron-donor/acceptor dyads. The extensive delocalizations of a pair of pi-electrons accord with the sizable values of (i) the enthalpies (-Delta H(D)) and entropies (-Delta S(D)) of pi-dimerization measured by quantitative UV-vis/EPR spectroscopies and (ii) the electronic coupling element H(ab) evaluated from the strongly allowed optical transitions, irrespective of whether the diamagnetic dimeric species bear a double-negative charge as in (TCNE)(2)(2-), (TCNQ)(2)(2-), (DDQ)(2)(2-), (CA)(2)(2-) or a double-positive charge as in (OMB)(2)(2+) or are uncharged as in (PHEN)(2). These long-bonded dimers persist in solution as well as in the solid state and suffer only minor perturbations with Delta d(D) < 10% from extra-dimer forces that may be imposed by counterion electrostatics, crystal packing, and so forth. The characteristic optical transitions in such diamagnetic two-electron dimers are shown to be related to those in the corresponding paramagnetic one-electron pimers of the same pi-radicals with their parent acceptor, both in general accord with Mulliken theory.  相似文献   
22.
Qualitative structural concepts about dynamic ion pairs, historically deduced in solution as labile solvent-separated and contact species, are now quantified by the low-temperature isolation of crystalline (reactive) salts suitable for direct X-ray analysis. Thus, dinitrobenzenide anion (DNB(-)) can be prepared in the two basic ion-paired forms by potassium-mirror reduction of p-dinitrobenzene in the presence of macrocyclic polyether ligands: L(C) (cryptand) and L(E) (crown-ethers). The crystalline "separated" ion-pair salt isolated as K(L(C))(+)//DNB(-) is crystallographically differentiated from the "contact" ion-pair salt isolated as K(L(E))(+)DNB(-) by their distinctive interionic separations. Spectral analysis reveals pronounced near-IR absorptions arising from intervalence transitions that characterize dinitrobenzenide to be a prototypical mixed-valence anion. Most importantly, the unique patterns of vibronic (fine-structure) progressions that also distinguish the "separated" from the "contact" ion pair in the crystalline solid state are the same as those dissolved into THF solvent and ensure that the same X-ray structures persist in solution. Moreover, these distinctive NIR patterns are assigned with the aid of Marcus-Hush (two-state) theory to the "separated"ion pair in which the unpaired electron is equally delocalized between both NO(2)-centers in the symmetric ground state of dinitrobenzenide, and by contrast, the asymmetric electron distribution inherent to "contact"ion pairs favors only that single NO(2)-center intimately paired to the counterion. The labilities of these dynamic ion pairs in solution are thoroughly elucidated by temperature-dependent ESR spectral changes that provide intimate details of facile isomerizations, ionic separations, and counterion-mediated exchanges.  相似文献   
23.
24.
Transient 1:1 precursor complexes for intermolecular self-exchange between various organic electron donors (D) and their paramagnetic cation radicals (D+*), as well as between different electron acceptors (A) paired with their anion radicals (A-*), are spectrally (UV-NIR) observed and structurally (X-ray) identified as the cofacial (pi-stacked) associates [D, D+*] and [A-*, A], respectively. Mulliken-Hush (two-state) analysis of their diagnostic intervalence bands affords the electronic coupling elements (HDA), which together with the Marcus reorganization energies (lambda) from the NIR spectral data are confirmed by molecular-orbital computations. The HDA values are found to be a sensitive function of the bulky substituents surrounding the redox centers. As a result, the steric modulation of the donor/acceptor separation (rDA) leads to distinctive electron-transfer rates between sterically hindered donors/acceptors and their more open (unsubstituted) parents. The latter is discussed in the context of a continuous series of outer- and inner-sphere mechanisms for organic electron-transfer processes in a manner originally formulated by Taube and co-workers for inorganic (coordination) donor/acceptor dyads-with conciliatory attention paid to traditional organic versus inorganic concepts.  相似文献   
25.
Tetrathiafulvalene (TTF) as the prototypical electron donor for solid-state (electronics) applications is converted to the unusual cation-radical salt, TTF+* CB- (where CB- is the non-coordinating closo-dodecamethylcarboranate), for crystallographic and spectral analyses. Near-IR studies establish the spontaneous self-association of TTF+* to form the diamagnetic [TTF+,TTF+] dication and to also undergo the equally rapid cross-association with its parent donor to form the mixed-valence [TTF+*,TTF] cation-radical. The latter, most importantly, represents the first (dyad) member of a series of p-doped tetrathiafulvalene (stacked) arrays, and the thorough scrutiny of its electronic structure with the aid of Mulliken-Hush (two-state) analysis of the diagnostic (intervalence) NIR band reveals Robin-Day Class II behavior. The theoretical consequences of the unique structure of the mixed-valence [TTF+*,TTF] dyad on (a) the electron-transfer mechanism for self-exchange, (b) the molecular-orbital analysis of the Marcus reorganization energy, and (c) the ab initio computation of the coupling element or transfer integral in p-doped (solid-state) arrays are discussed.  相似文献   
26.
Halogen bonding occurs between molecules featuring Lewis acidic halogen substituents and Lewis bases. It is often rationalized as a predominantly electrostatic interaction and thus interactions between ions of like charge (e. g., of anionic halogen bond donors with halides) seem counter-intuitive. Herein, we provide an overview on such complexes. First, theoretical studies are described and their findings are compared. Next, experimental evidences are presented in the form of crystal structure database analyses, recent examples of strong “anti-electrostatic” halogen bonding in crystals, and the observation of such interactions also in solution. We then compare these complexes to select examples of “counter-intuitive” adducts formed by other interactions, like hydrogen bonding. Finally, we comment on key differences between charge-transfer and electrostatic polarization.  相似文献   
27.
The choice of appropriate electron donors (D) and acceptors (A) allows for the first time the simultaneous observation of Mulliken charge-transfer states, [D,A], that can coexist in reversible equilibrium with electron-transfer states, {D+*,A-*}, for various diamagnetic organic redox dyads. The theoretical analysis based on the (two-state) Mulliken-Hush analysis of the intervalence optical transition, together with the spectral identification of the transient ion-radical pairs of D+* and A-*, leads to the construction of the unusual potential-energy surface consisting of a single minimum without any reorganizational barrier for electron-transfer cross-exchanges with driving forces close to the isergonic limit. The mechanistic implications of this direct demonstration of the facile charge-transfer/electron-transfer interchange are discussed.  相似文献   
28.
Addition of p-substituted styrenes, XSty (X = H, Me, MeO, or Cl) to the solutions of o-chloranil, oCA, in dichloromethane resulted in the transient formation of the charge-transfer complexes, [XSty, oCA], followed by the Diels-Alder reaction. At low temperatures, these reactions led to formation of essentially pure endocycloadducts. As expected for the inverse-electron-demand Diels-Alder reaction, the rate constants of the cycloaddition rose with the increase of the donor strength. However, while facile cycloaddition took place in the neat mixtures of the o-chloranil with p-methyl, p-chloro-, or unsubstituted styrenes at low temperatures, a similar system involving the strongest MeOSty donor was surprisingly persistent. X-ray structural measurements and quantum-mechanical computations indicated that this anomaly is related to the fact that the diene/dienophile orientation in the charge-transfer [MeOSty, oCA] complex is opposite to that in the endocycloadduct and in the lowest-energy transition state leading to this isomer. Thus, the proceeding of the cycloaddition requires dissociation of the (dead-end) complex. For the systems involving the oCA diene and either the HSty, ClSty, or MeSty dienophile, the donor/acceptor arrangements in the charge-transfer complexes apparently are consistent with that in the corresponding products, and the formation of these complexes does not hinder the Diels-Alder reaction.  相似文献   
29.
New forms have been observed for oscillatory Briggs-Rauscher reactions catalyzed by macrocyclic nickel complexes. The number of oscillations in the reaction increases in the presence of cobalt complexes. Suggestions are made on how the catalysts act in these systems.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 30, No. 3, pp. 167–171, May–June, 1994.  相似文献   
30.
Metastable (pre-reactive) intermediates, as commonplace transients in simple bimolecular reactions, are usually unobserved (and ignored)-though they provide vital mechanistic insight. Thus, the preequilibrium (charge-transfer) complexes of various aromatic donors with rather typical electron acceptors such as Br(2), NO(+), and NO(2)(+) are examined quantitatively (via their molecular and electronic structures) to reveal surprisingly unorthodox aspects of what is conventionally referred to in organic chemistry textbooks as electrophilic aromatic bromination, nitrosation, and nitration, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号