首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Definitive X-ray structures of "separated" versus "contact" ion pairs, together with their spectral (UV-NIR, ESR) characterizations, provide the quantitative basis for evaluating the complex equilibria and intrinsic (self-exchange) electron-transfer rates for the potassium salts of p-dinitrobenzene radical anion (DNB(-)). Three principal types of ion pairs, K(L)(+)DNB(-), are designated as Classes S, M, and C via the specific ligation of K(+) with different macrocyclic polyether ligands (L). For Class S, the self-exchange rate constant for the separated ion pair (SIP) is essentially the same as that of the "free" anion, and we conclude that dinitrobenzenide reactivity is unaffected when the interionic distance in the separated ion pair is r(SIP) > or =6 Angstroms. For Class M, the dynamic equilibrium between the contact ion pair (with r(CIP) = 2.7 Angstroms) and its separated ion pair is quantitatively evaluated, and the rather minor fraction of SIP is nonetheless the principal contributor to the overall electron-transfer kinetics. For Class C, the SIP rate is limited by the slow rate of CIP right arrow over left arrow SIP interconversion, and the self-exchange proceeds via the contact ion pair by default. Theoretically, the electron-transfer rate constant for the separated ion pair is well-accommodated by the Marcus/Sutin two-state formulation when the precursor in Scheme 2 is identified as the "separated" inner-sphere complex (IS(SIP)) of cofacial DNB(-)/DNB dyads. By contrast, the significantly slower rate of self-exchange via the contact ion pair requires an associative mechanism (Scheme 3) in which the electron-transfer rate is strongly governed by cationic mobility of K(L)(+) within the "contact" precursor complex (IS(CIP)) according to the kinetics in Scheme 4.  相似文献   

2.
The classic nitrobenzene anion-radical (NB(-*) or nitrobenzenide) is isolated for the first time as pure crystalline alkali-metal salts. The deliberate use of the supporting ligands 18-crown-6 and [2.2.2]cryptand allows the selective formation of contact ion pairs designated as (crown)M(+)NB(-*), where M(+) = K(+), Rb(+), and Cs(+), as well as the separated ion pair K(cryptand)(+)NB(-*)-both series of which are structurally characterized by precise low-temperature X-ray crystallography, ESR analysis, and UV-vis spectroscopy. The unusually delocalized structure of NB(-*) in the separated ion pair follows from the drastically shortened N-C bond and marked quinonoidal distortion of the benzenoid ring to signify complete (95%) electronic conjugation with the nitro substituent. On the other hand, the formation of contact ion pairs results in the substantial decrease of electronic conjugation in inverse order with cation size (K(+) > Rb(+)) owing to increased localization of negative charge from partial (NO(2)) bonding to the alkali-metal cation. Such a loss in electronic conjugation (or reverse charge transfer) may be counterintuitive, but it is in agreement with the distribution of odd-electron spin electron density from the ESR data and with the hypsochromic shift of the characteristic absorption band in the electronic spectra. Most importantly, this crystallographic study underscores the importance of ion-pair structure on the intrinsic property (and thus reactivity) of the component ions-as focused here on the nitrobenzenide anion.  相似文献   

3.
Successful isolation of a series of pure (crystalline) salts of labile quinone anion radicals suitable for X-ray crystallographic analysis allows for the first time their rigorous structural distinction as "separated" ion pairs (SIPs) vs "contact" ion pairs (CIPs). The quantitative evaluation of the precise changes in the geometries of these quinones (Q) upon one-electron reduction to afford the anion radical (Q-*) is viewed relative to the corresponding (two-electron) reduction to the hydroquinone (H2Q) via the Pauling bond-length/bond-order paradigm. Structural consequences between such separated and contact ion pairs as defined in the solid state with those extant in solution are explored in the context of their spectral (EPR, UV-vis) properties and isomerization of tightly bound CIPs. Moreover, the SIP/CIP dichotomy is also examined in intermolecular interactions for rapid (self-exchange) electron transfer between Q-* and Q with second-order rate constants of kET approximately equal to 10(8) M-1 s-1, together with the spectral observation of the paramagnetic intermediates [Q,Q-*]leading to 1:1 adducts, as established by X-ray crystallography.  相似文献   

4.
A ditopic receptor is shown to have an impressive ability to recognize and extract the ion pairs of various alkali halides into organic solution. X-ray diffraction analysis indicates that the salts are bound in the solid state as contact ion pairs. Transport experiments, using a supported liquid membrane and high salt concentration in the source phase, show that the ditopic receptor can transport alkali halide salts up to 10-fold faster than a monotopic cation or anion receptor and 2-fold faster than a binary mixture of cation and anion receptors. All transport systems exhibit the same qualitative order of ion selectivity; that is, for a constant anion, the cation selectivity order is K+ > Na+ > Li+, and for a constant cation, the anion transport selectivity order is I- > Br- > Cl-. The data suggest that with a ditopic receptor, the polarity of the receptor-salt complex can be lowered if the salt is bound as an associated ion pair, which leads to a faster diffusion through the membrane and a higher maximal flux.  相似文献   

5.
A new family of heteroditopic calix[4]diquinone receptors capable of the cooperative recognition of ion-pair species through a contact binding mechanism has been developed. The receptors bind contact ion pairs cooperatively, with an unprecedented AND recognition phenomenon being observed to operate in certain cases, in which receptors display no affinity for either of the individual "free" cation or anion, but bind the cation and anion ion-pair strongly. X-ray crystallographic, solution-state, and computational methods rationalize the observed recognition behavior of the receptors. It is shown that the contact ion-pair interaction occurs through a pi-stacking-mediated folding of the receptors such that the anion and cation binding sites are arranged in close proximity, while in the solid state an unusual ion-mediated receptor dimerization is observed. Molecular dynamics simulations are further used to explain the observed trends in the association constants of different ion-pair species and the mechanism of interaction.  相似文献   

6.
Ion pair speciation of ionic liquids(ILs) has an important effect on the physical and chemical properties of ILs and recognition of the structure of ion pairs in solution is essential. It has been reported that ion pairs of some ILs can be formed by hydrogen bonding interactions between cations and anions of them. Considering the fact that far-IR(FIR) spectroscopy is a powerful tool in indicating the intermolecular and intramolecular hydrogen bonding, in this work, this spectroscopic technique has been combined with molecular dynamic(MD) simulation and nuclear magnetic resonance hydrogen spectroscopy(~1H NMR) to investigate ion pairs of aprotic ILs [Bmim][NO_3], [BuPy][NO_3], [Pyr_(14)][NO_3], [PP_(14)][NO_3] and [Bu-choline][NO_3] in aqueous IL mixtures. The FIR spectra have been assigned with the aid of density functional theory(DFT) calculations, and the results are used to understand the effect of cationic nature on the structure of ion pairs. It is found that contact ion pairs formed in the neat aprotic ILs by hydrogen bonding interactions between cation and anion, were still maintained in aqueous solutions up to high water mole fraction(say 0.80 for [BuPy][NO3]). When water content was increased to a critical mole fraction of water(say 0.83 for [BuPy][NO3]), the contact ion pairs could be transformed into solvent-separated ion pairs due to the formation of the hydrogen bonding between ions and water. With the further dilution of the aqueous ILs solution, the solvent-separated ion pairs was finally turned into free cations and free anions(fully hydrated cations or anions). The concentrations of the ILs at which the contact ion pairs were transformed into solvent-separated ion pairs and solvent-separated ion pairs were transformed into free ions(fully hydrated ion) were dependent on the cationic structures. These information provides direct spectral evidence for ion pair structures of the aprotic ILs in aqueous solution. MD simulation and ~1H NMR results support the conclusion drawn from FIR spectra investigations.  相似文献   

7.
The investigation on UV-visible spectra of species formed by extracting some metal picrates with benzo-15-crown-5(B15C5) and dibenzo-18-crown-6(DB18C6) verified that there are some interactions of picrate anion with K , Na and rare earth ions in loaded organic phase. By the study of the charge transfer band and absorption spectra of picrate anion, it can be determined whether an ion pair has been formed and either a 1 : 1 contact ion pair or a 1 : 2 crown-separated ion pair involved in organic phase can be distinguished for an ion-pair extraction.  相似文献   

8.
Cooperativity effects among the interconnected anion and cation binding sites can profoundly alter the performance of heteroditopic receptors in selective ion pair recognition, processes that are oftentimes pertinent to biological systems and chemical separations. This work reports the effect of the linker that connects both binding sites on self-assembly of heteroditopic receptors in the presence of divalent first-row transition metal salts in solution and solid phase. Introduction of backbone flexibility in the receptor results in the formation of triple-stranded ion-pair helicates with an extraordinary selectivity towards CuSO4 through an anion-induced fit.  相似文献   

9.
The formation, stabilisation and reactivity of contact ion pairs of non‐protic imidazolium ionic liquids (ILs) in solution are conceptualized in light of selected experimental evidence as well theoretical calculations reported mainly in the last ten years. Electric conductivity, NMR, ESI‐MS and IR data as well as theoretical calculations support not only the formation of contact ion pairs in solution, but also the presence of larger ionic and neutral aggregates even when dissolved in solvents with relatively high dielectric constants, such as acetonitrile and DMSO. The presence of larger imidazolium supramolecular aggregates is favoured at higher salt concentrations in solvents of low dielectric constant for ILs that contain shorter N‐alkyl side chains associated with anions of low coordination ability. The stability and reactivity of neutral contact species are also dependent on the nature of the anion, imidazolium substituents, and are more abundant in ILs containing strong coordinating anions, in particular those that can form charge transfer complexes with the imidazolium cation. Finally, some ILs display reactivities as contact ion pairs rather than solvent‐separated ions.  相似文献   

10.
Ion-pair formation between a Na+ cation and the [PtCl62-] anion in methanol is observed from195Pt NMR chemical shift trends as well as from molecular dynamics computer simulations. Free energy of association calculations reveal that contact ion pairs (CIPs) are the most favored configuration in methanol, followed by solvent shared ion pairs (SSHIPs). By contrast, such ion-pair formation is not observed for comparable solutions in water.  相似文献   

11.
Data on the special salt effect in monomolecular heterolysis reactions (Sn1, E1, solvolysis) are summarized and critically analyzed. The mechanisms suggested by Ingold, Winstein, Dannenberg, Okamoto, and the authors are discussed. The special salt effect is due to the effect of a salt on the contact ion pair of a substrate. Quadrupoles and ion triplets are formed. In the limiting step of the heterolysis, a contact ion pair interacts with a solvent cavity. Association of salts with a contact ion pair increases the lifetime of the cationoid and the probability of its contact with the solvent cavity. A spatially separated ion pair is formed, which rapidly transforms into a solvation-separated ion pair, which, also rapidly, yields reaction products.  相似文献   

12.
The hydrogen bond resonance of a sodium chloride (NaCl) ion pair trapped in aqueous ice has been observed by transmission terahertz time-domain spectroscopy. The absorption peak of a sodium chloride ion pair in ice is 1.65 THz at 83 K. By investigating the interaction of the cation and anion with other chemical compounds, we deduce that the absorption peak originates from the hydrogen bond resonance of sodium chloride and water molecules. The charge redistribution that occurs when other ion pairs are added to aqueous salt solution changes the absorption spectrum. Furthermore, the results also indicate that simple molecules such as sodium halides have fingerprints in the terahertz region when the ions are trapped in ice. NaCl ion pairs in seawater and in Ringer's solution were examined.  相似文献   

13.
The theory on the ultrasonic absorption of electrolyte solutions we have proposed previously [T. Yamaguchi et al., J. Chem. Phys. 126, 144505 (2007)] is extended to calculate the frequency-dependent electric conductivity of the solution. The ionic contribution of the dielectric relaxation spectrum is obtained at the same time. The theory is able to handle the contributions of both the ion-pair dynamics and the relaxation of ionic atmosphere, as is the case of ultrasonic absorption. The effect of the barrier height between the contact and solvent-separated ion pairs is investigated in detail. It is clarified that the competition between the dissociation and reorientational relaxation rates of the contact ion pair is an important factor for the ion pair to be regarded as the ion pair in terms of ionic conductivity.  相似文献   

14.
利用超额拉曼光谱研究硝酸镁水溶液中的离子对   总被引:1,自引:0,他引:1  
利用超额拉曼光谱研究了室温下硝酸镁(Mg(NO3)2)溶液的离子缔合情况. 测量了该溶液羟基(-OH)伸 缩振动谱段和NO3-全对称伸缩振动谱段的拉曼光谱, 利用超额拉曼光谱及光谱拟合分析了这些光谱数据. - OH伸缩振动谱段的超额拉曼光谱显示, 低浓度(<2.3 mol·kg-1)下阴离子第一水合层的水分子含量随溶液浓度 的升高呈线性关系增加, 在较高浓度时(>2.3 mol·kg-1), 该含量变化偏离了线性关系, 这是因为Mg(NO3)2溶液 在高浓度时存在直接接触离子对导致的. 同样的转折点浓度也在对NO3- 全对称伸缩振动谱段的分析中被观测 到. 除了直接接触离子对, 还观测到三种溶剂分隔型离子对. 对该谱段下所有浓度的拉曼光谱和超额光谱进行 同时拟合, 给出了不同浓度下各种离子对的相对含量, 结果显示在0.23-4.86 mol·kg-1浓度范围内都有溶剂分 隔型离子对和直接接触型离子对. 当Mg(NO3)2浓度低于2.3 mol·kg-1时, 所有离子对的相对含量随浓度增加呈 现直线上升, 在高于这个浓度后直接接触离子对的相对含量急剧增加, 一种溶剂分隔型离子对的相对含量增加 变缓, 另一种溶剂分隔型离子对的相对含量逐渐减少, 还有一种溶剂分隔型离子对相对含量的增加趋势保持不 变, 在Mg(NO3)2浓度大于3.5 mol·kg-1后, 其相对含量不再发生明显变化.  相似文献   

15.
Structural, energetic, vibrational, and electronic properties of salt ion pairs (AgCl and NaCl) in water (W) clusters were investigated by density functional theory. In agreement with recent theoretical studies of NaCl-water clusters, structures where the salt ion pair is separated by solvent molecules or solvent separated ion pair (SSIP) were found in AgCl-W(6) and AgCl-W(8) aggregates. Our results indicate that for small AgCl-water clusters, contact ion pair (CIP) structures are energetically more stable than SSIP, whereas an opposite tendency was observed for NaCl-water clusters. In comparison with CIP, SSIP are characterized by extensive electronic density reorganization, reflecting enhanced polarization effects. A major difference between AgCl-water and NaCl-water CIP aggregates concerns charge transfer. In AgCl-water CIP clusters, charge is transferred from the solvent (water) to the ion pair. However, in NaCl-water CIP clusters charge is transferred from the ion pair to the water molecules. The electronic density reorganization in the aggregates was also discussed through the analysis of electronic density difference isosurfaces. Time dependent density functional theory calculations show that upon complexation of AgCl and NaCl with water molecules, excitation energies are significantly blueshifted relative to the isolated ion pairs ( approximately 2 eV for AgCl-W(8) SSIP). In keeping with results for NaI-water clusters [Peslherbe et al., J. Phys. Chem. A 104, 4533 (2000)], electronic oscillator strengths of transitions to excited states are weaker for SSIP than for CIP structures. However, our results also suggest that the difference between excitation energies and oscillator strengths of CIP and SSIP structures may decrease with increasing cluster size.  相似文献   

16.
Ion-pair recognition is a new field of research emerging from cation and anion coordination chemistry. Specific types of heteroditopic receptor designs for ion pairs and the complexity of ion-pair binding are discussed to illustrate key concepts such as cooperativity. The importance of this area of research is reflected by the wide variety of potential applications of ion-pair receptors, including applications as membrane transport and salt solubilization agents and sensors.  相似文献   

17.
本文研究了溶剂效应和结构效应对染料碘翁盐光物理, 光化学性质的影响。观察到在溶剂中离子对可以各种形式存在, 如紧密离子对、溶剂分隔离子对或溶剂化的自由离子, 溶剂的极性不仅影响各种存在形式的光谱性质, 而且影响它们之间的平衡关系, 进而影响离子对体系的物理化学性质。染料母核和碘翁阳离子的结构均对离子对体系的性质有影响。光诱导电子转移反应的热力学驱动力越大, 反应速度越快。用分子模拟技术(Molecular Modeling)对离子对体系的立体结构进行了研究, 为理解离子对体系的各种物理化学行为提供了重要的参考。  相似文献   

18.
The results of ion-pair chromatography with UV-absorbing counterions are described. Hydroxynaphthalenesulfonic acids are used as ion pair formers, and alkaloids as test samples. The separations are performed on silanized silica gel from Merck and KC18F plates from Whatman. The influence of the counterion on the Rf-value is demonstrated. Some alkaloids exhibit characteristic fluorescence as ion pairs.  相似文献   

19.
Open statistical ensemble simulations are used to study the mechanism of nucleation of atmospheric water on sodium-chloride ion pair in a wide range of temperature and relative humidity values. The extended simple point-charge model is used for water molecules. Ions-water nonadditive interactions are taken into account by introducing the mutual polarization of ions and water in the field of each other. Gibbs free-energy variations are calculated from Na+-Cl- pair-correlation function and used as a criterion for determining the possible stable states of the cluster. In this relation, it was found that the dissociation of ion pairs in water clusters occurs even at vapor pressures of only a few millibars. In the conditions under consideration solvent-separated ion-pair states are found to be more probable than contact ion-pair configurations. The susceptibilities of water and ions are found to play an essential role in the stabilization of ions at large separations. The structure of ion-induced clusters is analyzed in terms of binary correlation functions. The non-pair interactions influence essentially the structure of ion solvation shells. The results of simulation show that the separation of the charges in water clusters containing simple ions can take place under atmospheric conditions.  相似文献   

20.
Carbon-13 dipolar spin-lattice relaxation times can be used to study microscopic ion mobility in solvent-separated and contact ion-pair systems. Two chemically stable ion pairs were studied. Cyclohexylammonium formate observed in a number of solvents allows correlation of relaxation times—and therefore ion rotational mobility—with empirical solvent polarity indices. Estimation of the effective anion radius shows a change of a factor of three in size arising from solvation/ion-pairing effects. Trimesate trianion (1,3,5-tricarboxybenzene) with differing cations present in solution is a good probe of changes in the solvation sphere and degree of ion aggregation. Variable temperature studies give an activation energy for overall ionic reorientation of c. 5 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号