首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   1篇
  国内免费   1篇
化学   285篇
晶体学   1篇
力学   4篇
数学   16篇
物理学   25篇
  2016年   2篇
  2014年   1篇
  2013年   8篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   4篇
  2008年   3篇
  2007年   13篇
  2006年   13篇
  2005年   11篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   16篇
  1989年   11篇
  1988年   12篇
  1987年   9篇
  1986年   7篇
  1985年   9篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   10篇
  1974年   14篇
  1973年   11篇
  1972年   9篇
  1971年   9篇
  1970年   13篇
  1969年   10篇
  1968年   9篇
  1967年   6篇
  1966年   4篇
  1965年   2篇
  1962年   1篇
排序方式: 共有331条查询结果,搜索用时 328 毫秒
21.
Nonaqueous diazotization-dediazoniation of two types of aminopurine nucleoside derivatives has been investigated. Treatment of 9-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)-2-amino-6-chloropurine (1) with SbCl(3)/CH(2)Cl(2) was examined with benzyltriethylammonium (BTEA) chloride as a soluble halide source and tert-butyl nitrite (TBN) or sodium nitrite as the diazotization reagent. Optimized yields (>80%) of the 2,6-dichloropurine derivative were obtained with SbCl(3). Combinations with SbBr(3)/CH(2)Br(2) gave the 2-bromo-6-chloropurine product (>60%), and SbI(3)/CH(2)I(2)/THF gave the 2-iodo-6-chloropurine derivative (>45%). Antimony trihalide catalysis was highly beneficial. Mixed combinations (SbX(3)/CH(2)X'(2); X/X' = Br/Cl) gave mixtures of 2-(bromo, chloro, and hydro)-6-chloropurine derivatives that were dependent on reaction conditions. Addition of iodoacetic acid (IAA) resulted in diversion of purine radical species into a 2-iodo-6-chloropurine derivative with commensurate loss of other radical-derived products. This allowed evaluation of the efficiency of SbX(3)-promoted cation-derived dediazoniations relative to radical-derived reactions. Efficient conversions of adenosine, 2'-deoxyadenosine, and related adenine nucleosides into 6-halopurine derivatives of current interest were developed with analogous combinations.  相似文献   
22.
A study involving the reactivity of the pyrrolo[2,3-d] pyrimidine ring system at position 6 with another exocyclic group (CN or -NH2) already residing at C5 has established that hydrogen and bromine are susceptible to electrophilic and acid-catalyzed nucleophilic substitution, respect-tively. In one instance a strong nucleophile (hydrazine) gave nucleophilic substitution at position 6 which was followed by a reaction with the o-nitrile group to afford the tricyclic nucleoside 4,5-diamino-8-(β-D-ribofuranosyl)pyrazolo[3′, 4′ :5,4] pyrrolo[2,3-d] pyrimidine (4).  相似文献   
23.
DETECTION OF DNA-PSORALEN PHOTOADDUCTS in situ   总被引:1,自引:0,他引:1  
Abstract— An immunological method, with the use of specific immune serum, has been developed for detection of 8-methoxypsoralen (8-MOP) photoadducts to DNA, formed in situ in cell nuclei, after combined treatment with 8MOP and UV-A irradiation (Zarçbska et al. , 1978). Lymphocytes fixed on slides or in suspension, and cryostat sections of different mammalian tissues, served as antigenic substrate, after treatment with 8-MOP and UV-A in vitro. Specific fluorescence in these substrates was detected in the nuclei after treatment with 30 ˜ 140 kJ/m2 UV-A in the presence of 0.1-0.3 μg/cm2 8-MOP. PHA-stimulated-lymphocytes appeared to be the most sensitive substrate.
However, hairless mice treated with high doses of UV-A in vivo , 70 ˜ 360 kJ/m2 did not reveal a specific fluorescence of epidermal nuclei, unless a high local concentration of 8-MOP was attained.
The apparent discrepancy in the level of photoadduct detection between the in vitro and in vivo treated specimens was explained by the low number of DNA-8-MOP-photoadducts formed in vivo under these experimental conditions. The relevance of these findings to the role of DNA-8-MOP-photoadducts formed during PUVA photochemotherapy is discussed.  相似文献   
24.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) with nonpolar matrices has been investigated for its applicability to the characterization of atmospheric resid crude oil fractions. The data obtained by use of nonpolar matrices was compared with that from polar matrices as well as from direct LDI-MS and field ionization mass spectrometry. Nonpolar matrices, such as anthracene or 9-cyanoanthracene, yield only a single radical molecular cation upon LDI. Thus, no interfering matrix-related ions are present during the MALDI-TOFMS analysis of the crude oil sample. Nonpolar matrices yield molecular mass distributions from linear mode MALDI-TOFMS that are comparable to distributions found with LDI-MS. An advantage of nonpolar matrices is the increased production of analyte ions, which allows reflectron mode MALDI-TOFMS to be performed. Nonpolar matrices are also shown to be less sensitive to solvent and sample preparation conditions than conventional polar matrices. These results suggest that nonpolar matrices may be favorable alternatives to more traditional polar or acidic matrices commonly used in the MALDI mass spectral characterization of crude oil related samples.  相似文献   
25.
The total synthesis of 6-amino-1,2,3-triazolo[4,5-c]pyridin-4(5H)one (8-aza-3-deazaguanine, 3 ) and 6-amino-1-(β-D-ribofuranosyl)-1,2,3-triazolo[4,5-c]pyridin-4(5H)one (8-aza-3-deazaguano-sine, 22 ) has been described for the first time by a novel base-catalyzed ring closure of 4(5)-cyanomethyl-1,2,3-triazole-5(4)carboxamide (14) and methyl 5-cyanomethyl-1-(2,3,5-tri-O-ben-zoyl-β-D-ribofuranosyl)-1,2,3-triazole-4-carboxylate (17) , respectively. Under the catalysis of DBU, 2,4-dinitrophenylhydrazone of dimethyl 1,3-acetonedicarboxylate (7) was converted to methyl 5-methoxycarbonylmethyl-1-(2,4-dinitroanilino)-1,2,3-triazole-4-carboxylate (12) via dimethyl 2-diazo-3-iminoglutarate (8) . Catalytic reduction of 12 gave methyl 4(5)methoxycar-bonylmethyl-1,2,3-triazole-5(4)carboxylate (11) from which methyl 4(5)carbamoylmethyl-1,2,3-triazole-5(4)carboxylate (10) was obtained by ammonolysis. Dehydration of 10 provided methyl 4(5)cyanomethyl-1,2,3-triazole-5(4)carboxylate (13) which on amination gave 14 . The 1,2,3-triazole nucleosides 17, 18 and 19 were obtained from the stannic chloride-catalyzed condensation of the trimethylsilyl 13 and a fully acylated β-D-ribofuranose. The yield and ratio of the ribofuranosyl derivatives of 13 markedly depends on the ratio of stannic chloride used. The structures of the nucleosides 22 and 23 were established by a combination of NOE, 1H-nmr and 13C-nmr spectroscopy.  相似文献   
26.
Nucleosides of pyrrolo[2,3-d]pyridazin-4(5H)-ones were prepared by the single-phase sodium salt glycosylation of appropriately functionalized pyrrole precursors. The glycosylation of the sodium salt of ethyl 4,5-dichloro-2-formyl-1H-pyrrole-3-carboxylate ( 4 ), or its azomethino derivative 7 , with 1-bromo-2,3,5-tri-O-benzoyl-D-ribofuranose in acetonitrile afforded the corresponding substituted pyrrole nucleosides ethyl 4,5-dichloro-2-formyl-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-1H-pyrrole-3-carboxylate ( 5 ) and ethyl 4,5-dichloro-2-phenylazomethino-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-1H-pyrrole-3-carboxylate ( 8 ), respectively. The latter, upon treatment with hydrazine, afforded the annulated product 2,3-dichloro-1-β-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyridazin-4(5H)-one ( 6 ), in good yield. The unsubstituted analog 1-β-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyridazin-4(5H)-one ( 9 ), was obtained upon catalytic dehalogenation of 6 . This report represents the first example of the synthesis of nucleosides of pyrrolopyridazines.  相似文献   
27.
Thermolysis of a 2'-[(16)O]-O-benzoyl-[(17)O]-5'-O-(tert-butyldimethylsilyl)-O(2),3'-cyclouridine derivative gave the more stable 3'-[(17)O]-O-benzoyl-[(16)O]- 5'-O-(tert-butyldimethylsilyl)-O(2),2'-cyclouridine isomer, which was converted into 3'-[(17)O]-2'-azido-2'-deoxyuridine by deprotection and nucleophilic ring opening at C2' with lithium azide. The 5'-diphosphate was prepared by nucleophilic displacement of the 5'-O-tosyl group with tris(tetrabutylammonium) hydrogen pyrophosphate. Model reactions gave (16)O and (18)O isotopomers, and base-promoted hydrolysis of an O(2),2'-cyclonucleoside gave stereodefined access to 3'-[(18)O]-1-(beta-D-arabinofuranosyl)uracil. Inactivation of ribonucleoside diphosphate reductase with 2'-azido-2'-deoxynucleotides results in appearance of EPR signals for a nitrogen-centered radical derived from azide, and 3'-[(17)O]-2'-azido-2'-deoxyuridine 5'-diphosphate provides an isotopomer to perturb EPR spectra in a predictable manner.  相似文献   
28.
The first synthesis of a purine nucleoside analog containing a bridgehead nitrogen atom is here reported. The direct glycosylation of the trimethylsilyl derivative of s-triazolo[2,3-a] pyrimid-7-one has been shown to give 3-(β-D-ribofuranosyl)-s-triazolo[2,3-a]pyrimid-7-one (V) and 4-(β-D-ribof'uranosyl)-s-lriazolo[2,3-α]pyrimid-7-one (VII). The nueleoside V may he considered a close analog of inosine in which the nitrogen N1 and C5 of inosine have been interchanged. Bro-minalion of the tri-O-acelyl derivative IV gave, after deblocking, 6-bromo-3-(β-D-ribofurnaosyl)-s-triazolo[2,3-a] pyrimid-7-one (IX). Structural assignments of the nucleosides were made on the basis of comparison of the ultraviolet absorption spectral characteristics with 3-methyl-s-triazolo-[2,3-a]pyrimid-7-one (XI) and 4-methyl-s-lriazolo[2,3-a Jpyrimid-7-one (XII) prepared by a standard procedure from 7-methoxy-s-triazolo(2,3-a] pyrimidine (X).  相似文献   
29.
The 2′-deoxyribofuranose analog of the naturally occurring antibiotics SF-2140 and neosidomycin were prepared by the direct glycosylation of the sodium salts of the appropriate indole derivatives, with 1-chloro-2- deoxy-3,5-di-O-p-toluoyl-α-D-erythropentofuranose ( 5 ). Thus, treatment of the sodium salt of 4-methoxy-1H- indol-3-ylacetonitrile ( 4a ) with 5 provided the blocked nucleoside, 4-methoxy-1-(2-deoxy-3,5-di-O-p-toluoyl-β- D-erythropentofuranosyl)-1H-indol-3-ylacetonitrile ( 6a ), which was treated with sodium methoxide to yield the SF-2140 analog, 4-methoxy-1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indol-3- ylacetonitrile ( 7a ). The neosidomycin analog ( 8 ) was prepared by treatment of the sodium salt of 1H-indol-3-ylacetonitrile ( 4b ) with 5 to obtain the blocked intermediate 1-(2-deoxy-3,5-di-O-p-toluoyl-β-D-erythropentofuranosyl) ?1H-indol-3-ylace-tonitrile ( 6b ) followed by sodium methoxide treatment to give 1-(2-deoxy-β-D-erythropentofuranosyl)-1H- indol-3-ylacetonitrile ( 7b ) and finally conversion of the nitrile function of 7b to provide 1-(2-deoxy-β-D- erythropentofuranosyl)-1H-indol-3-ylacetamide ( 8 ). In a similar manner, indole ( 9a ) and several other substituted indoles including 1H-indole-4-carbonitrile ( 9b ), 4-nitro-1H-indole ( 9c ), 4-chloro-1H-indole-2-carboxamide ( 9d ) and 4-chloro-1H-indole-2-carbonitrile ( 9e ) were each glycosylated and deprotected to provide 1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indole ( 11a ), 1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indole-4- carbonitrile ( 11b ), 4-nitro-1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indole ( 11c ), 4-chloro-1-(2-deoxy-β-D- erythropentofuranosyl)-1H-indole-2-carboxamide ( 11d ) and 4-chloro-1-(2-deoxy-β-D-erythropentofuranosyl)- 1H-indole-2-carbonitrile ( 11e ), respectively. The 2′-deoxyadenosine analog in the indole ring system was prepared for the first time by reduction of the nitro group of 11c using palladium on carbon thus providing 4-amino-1-(2-deoxy-β-D-erythropentofuranosyl)- 1H-indole ( 16 , 1,3,7-trideaza-2′-deoxyadenosine).  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号