首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   0篇
化学   62篇
力学   1篇
物理学   4篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2013年   7篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   9篇
  2007年   4篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2001年   5篇
  1996年   3篇
  1995年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
21.
22.
Radial flow chromatography can be a solution for scaling up a packed bed chromatographic process to larger processing volumes. In this study we compared axial and radial flow affinity chromatography both experimentally and theoretically. We used an axial flow column and a miniaturized radial flow column with a ratio of 1.8 between outer and inner surface area, both with a bed height of 5 cm. The columns were packed with affinity resin to adsorb BSA. The average velocity in the columns was set equal. No difference in performance between the two columns could be observed. To gain more insight into the design of a radial flow column, the velocity profile and resin distribution in the radial flow column were calculated. Using mathematical models we found that the breakthrough performance of radial flow chromatography is very similar to axial flow when the ratio between outer and inner radius of the radial flow column is around 2. When this ratio is increased, differences become more apparent, but remain small. However, the ratio does have a significant influence on the velocity profile inside the resin bed, which directly influences the pressure drop and potentially resin compression, especially at higher values for this ratio. The choice between axial and radial flow will be based on cost price, footprint and packing characteristics. For small-scale processes, axial flow chromatography is probably the best choice, for resin volumes of at least several tens of litres, radial flow chromatography may be preferable.  相似文献   
23.
Zusammenfassung DieCNDO/CI-Methode wurde auf die theoretische Interpretation der Elektronenspektren der Chinonen und des p-Chinonmethids angewendet. Die berechneten Transferenergien sind in guter Übereinstimmung mit dem Experiment. Die Gültigkeit derCNDO/CI-Rechnungen aber hängt von der vorausgesetzten Parametrisierung ab. Die bei uns verwendete Parametrisierung vonKuehnlenz undJaffé wurde erfolgreich zur Untersuchung der Elektronenspektren vielen organischen Verbindungen benutzt.
LCAO MO investigations on lignin model compounds. V. CNDO/CI calculations on electronic spectra of quinoide and quinone methide structures
TheCNDO method in the modification ofDel Bene andJaffé was used for investigations on the electronic spectra of o-benzoquinone, 4-methyl-o-benzoquinone, hydroxy-p-benzoquinone and p-quinone methide.


Mit 1 Abbildung

Teil 5:LCAO MO-Untersuchung von Lignin-Modellsubstanzen. Teil 4: Chem. Zvesti31 (1977), im Druck.  相似文献   
24.
25.
Processes such as chromatographic separation and nanofiltration can remove low molecular weight sugars from liquid mixtures of oligosaccharides. As an alternative for the separation of such liquid mixtures, we studied mass diffusion separation of such sugars in a microfluidic device with incorporated nanofiltration membranes. This separation method is based on differences between diffusivities of components and does not require high transmembrane pressures. The effects of channel depth and flow rate were studied in experiments. The key parameters selectivity and rejection increased with increasing channel depth due to increased external mass transfer limitations. Among the studied membranes, the obtained selectivities and rejections correlated to the specified retention values by the manufacturers. Compared to more conventional nanofiltration where high pressure forces solutes through membranes, we obtained corresponding selectivities and fluxes of only an order of magnitude smaller. Simulated results indicated that with optimized microchannel and membrane dimensions, the presented separation process can compete with currently available separation technologies.  相似文献   
26.
27.
Fox M  Esveld E  Luttge R  Boom R 《Lab on a chip》2005,5(9):943-948
This paper presents a new microreactor dedicated for pulsed electric field treatment (PEF), which is a pasteurization method that inactivates microorganisms with short electric pulses. The PEF microreactor consists of a flow-through channel with a constriction where the electric field is focussed. Compared to a laboratory-scale setup 25 times lower voltages were needed to obtain the same electric field strength due to the close electrode spacing. A finite element model showed that the electric field intensity is very homogeneous throughout the channel, which is crucial for the pasteurization processes. Experiments where artificial vesicles, loaded with carboxyfluorescein, were electroporated showed that the maximum transmembrane potential adequately described the processes both in the microreactor and the laboratory-scale setup, although the length scales are different. Electroporation started at a transmembrane potential of 0.5 V, reaching a maximum fraction of electroporated vesicles of 51% at a transmembrane potential of 1.5 V. The partial electroporation is not a result of the heterogenity of the vesicles or the electric field. With this new PEF microreactor it is possible to study the PEF process in more detail.  相似文献   
28.
M. Remko 《Chemical Papers》2007,61(2):133-141
Computational chemical methods have been used to correlate the molecular properties of the 10 ACE inhibitors (captopril, enalapril, perindopril, lisinopril, ramipril, trandolapril, quinapril, fosinopril, benazepril, and cilazapril) and some of their active metabolites (enalaprilat, perindoprilat, ramiprilat, trandolaprilat, quinaprilat, fosinoprilat, benazeprilat, and cilazaprilat). The computed pK a values correlate well with the available experimental values. In the dicarboxylic ACE inhibitors, the carboxyalkyl carboxylate group of the ACE inhibitors studied is more acidic than the C-terminal carboxylate. However, at physiological pH = 7.4 both carboxyl groups of ACE inhibitors are completely ionized and the dicarboxyl-containing ACE inhibitors behave as strong acids. The available experimental partition coefficients of these ACE inhibitors investigated are well reproduced by the neural network-based ALOGPs and the fragment-based KoWWiN methods. All parent drugs (and prodrugs), with the exception of fosinopril, are compounds with low lipophilicity. Calculated pK a, lipophilicity, solubility, absorption, and polar surface area of the most effective ACE inhibitors for the prevention of myocardial infarction, perindopril and ramipril, were found similar. Therefore, it is probable that the experimentally observed differences in the survival benefits in the first year after acute myocardial infarction in patients 65 years of age or older correlate closely to the physicochemical and pharmacokinetic characteristics of the specific ACE inhibitor that is used.  相似文献   
29.
The formation of 2-aminoacetamide from ammonia and glycine and N-glycylglycine from two glycine molecules with and without Mg2+, Cu2+, and Zn2+ cations as catalysts have been studied as model reactions for peptide bond formation using the B3LYP functional with 6–311+G(d,p) and 6–31G(d) basis sets. The B3LYP method was also used to characterize the nine gas–phase complexes of neutral glycine, its amide (2-aminoacetamide), and N-glycylglycine with Lewis acids Mg2+, Cu2+, and Zn2+, respectively. Further, the gas-phase hydration of metal-coordinated complexes of glycine, 2-aminoacetamide, and N-glycylglycine was also investigated. Finally, the effect of water on the structure and reactivity of the metal coordinated complexes was determined. Enthalpies and Gibbs energies for the stationary points of each reaction have been calculated to determine the thermodynamics of the reactions investigated. A substantial decrease in reaction enthalpies and Gibbs energies was found for glycine–ammonia and glycine–glycine reactions coordinated by Mg2+, Cu2+, and Zn2+ ions compared to those of the uncoordinated 2-aminoacetamide bond formation. The formation of a dipeptide is a more exothermic process than the creation of simple 2-aminoacetamide from glycine. The energetic effect of the transition metal ions Cu2+ and Zn2+ is of similar strength and more pronounced than that of the Mg2+ cation. The basicity order of the amides investigated shows the order: NH2CH2CO2H < NH2CH2CONH2 < NH2CH2CONHCH2CO2H. Interaction enthalpies and Gibbs energies of metal ion–amide complexes increase as Mg2+2+2+. In both reactant (glycine) and reaction products (2-aminoacetamide, N-glycylglycine) dihydration caused considerable reduction (about 200–500 kJ-mol–1) of the strength of the bifurcated metal–amide bonds. Solvent effects also reduce the reaction enthalpy and Gibbs energy of reactions under study.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号