首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   0篇
化学   80篇
晶体学   1篇
力学   2篇
数学   6篇
物理学   24篇
  2023年   1篇
  2020年   2篇
  2017年   1篇
  2015年   2篇
  2013年   6篇
  2012年   7篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   5篇
  2006年   9篇
  2005年   4篇
  2004年   3篇
  2003年   7篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1996年   8篇
  1995年   7篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1979年   1篇
  1976年   1篇
  1970年   1篇
  1967年   1篇
  1935年   2篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
21.
Proline derivatives with a C(γ)-exo pucker typically display a high amide bond trans/cis (K(T/C)) ratio. This pucker enhances n→π* overlap of the amide oxygen and ester carbonyl carbon, which favors a trans amide bond. If there were no difference in n→π* interaction between the ring puckers, then the correlation between ring pucker and K(T/C) might be broken. To explore this possibility, proline conformations were constrained using a methylene bridge. We synthesized discrete gauche and anti 5-fluoro- and 5-hydroxy-N-acetylmethanoproline methyl esters from 3-syn and 3-anti fluoro- and hydroxymethanopyrrolidines using directed α-metalation to introduce the α-ester group. NBO calculations reveal minimal n→π* orbital interactions, so contributions from other forces might be of greater importance in determining K(T/C) for the methanoprolines. Consistent with this hypothesis, greater trans amide preferences were found in CDCl(3) for anti isomers en-MetFlp and en-MetHyp (72-78% trans) than for the syn stereoisomers ex-MetFlp and ex-MetHyp (54-67% trans). These, and other, K(T/C) results that we report here indicate how substituents on proline analogues can affect amide preferences by pathways other than ring puckering and n→π* overlap and suggest that caution should be exercised in assigning enhanced pyrrolidine C(γ)-exo ring puckering based solely on enhanced trans amide preference.  相似文献   
22.
23.
24.
Amide-amide hydrogen bonds have been implicated in directing protein folding and enhancing protein stability. Inversion transfer (13)C NMR spectroscopy and IR spectroscopy were used to compare the ability of various amide solvents and of water to alter the rate of the cis-trans isomerization of the prolyl peptide bond of Ac-Gly-[β,δ-(13)C]Pro-OMe and the amide I vibrational mode of [(13)C=O]Ac-Pro-OMe. The results indicate that secondary amides are significantly weaker hydrogen bond donors than is formamide or water. These results are most consistent with models for protein folding in which the formation of secondary structure is a cooperative process that follows hydrophobic collapse. These results also suggest that a hydrogen bond between a main-chain oxygen and an asparagine or glutamine sidechain may contribute more to protein stability than does a main-chain-main-chain hydrogen bond.  相似文献   
25.
A small-molecule catalyst of protein folding in vitro and in vivo   总被引:3,自引:0,他引:3  
BACKGROUND: The formation of native disulfide bonds between cysteine residues often limits the rate and yield of protein folding. The enzyme protein disulfide isomerase (PDI) catalyzes the interchange of disulfide bonds in substrate proteins. The two -Cys-Gly-His-Cys- active sites of PDI provide a thiol that has a low pKa value and a disulfide bond of high reduction potential (Eo'). RESULTS: A synthetic small-molecule dithiol, (+/-)-trans-1,2-bis(2-mercaptoacetamido)cyclohexane (BMC), has a pKa value of 8.3 and an Eo' value of -0.24 V. These values are similar to those of the PDI active sites. BMC catalyzes the activation of scrambled ribonuclease A, an inactive enzyme with non-native disulfide bonds, and doubles the yield of active enzyme. A monothiol analog of BMC, N-methylmercaptoacetamide, is a less efficient catalyst than BMC. BMC in the growth medium of Saccharomyces cerevisiae cells increases by > threefold the heterologous secretion of Schizosaccharomyces pombe acid phosphatase, which has eight disulfide bonds. This effect is similar to that from the overproduction of PDI in the S. cerevisiae cells, indicating that BMC, like PDI, can catalyze protein folding in vivo. CONCLUSIONS: A small-molecule dithiol with a low thiol pKa value and high disulfide Eo' value can mimic PDI by catalyzing the formation of native disulfide bonds in proteins, both in vitro and in vivo.  相似文献   
26.
27.
Protein assembly by orthogonal chemical ligation methods   总被引:4,自引:0,他引:4  
Chemical synthesis harbors the potential to provide ready access to natural proteins as well as to create nonnatural ones. The Staudinger ligation of a peptide containing a C-terminal phosphinothioester with a peptide containing an N-terminal azide gives an amide with no residual atoms. This method for amide bond formation is orthogonal and complementary to other ligation methods. Herein, we describe the first use of the Staudinger ligation to couple peptides on a solid support. The fragment thus produced is used to assemble functional ribonuclease A via native chemical ligation. The synthesis of a protein by this route expands the versatility of chemical approaches to protein production.  相似文献   
28.
29.
A monomer for ring-opening metathesis polymerization (ROMP) has been developed that also functions as a portion of a GdIII chelating moiety for a magnetic resonance imaging contrast agent. An increase in per GdIII relaxivity was shown upon transition from monomer to polymer. Additionally, extremely large molecular relaxivities were achieved through incorporation of multiple GdIII ions per polymer. The nature of ROMP-derived polymers allows for functionalization of the monomer units and termini through orthogonal chemistry. This strategy is the basis for a new class of highly sensitive, targeted imaging agents.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号