首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   7篇
  国内免费   1篇
化学   58篇
力学   3篇
数学   5篇
物理学   16篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   6篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   3篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有82条查询结果,搜索用时 453 毫秒
61.
The thioacetalisation of a variety of heterocyclic, aromatic, and aliphatic carbonyl compounds (1 mmol) with ethane-1,2-dithiol (1 mmol) using silica sulphuric acid (SSA) is presented as an efficient heterogeneous catalyst under mild and solvent-free conditions at 60°C. The thioacetals were formed within a short reaction time (1–34 min) and isolated with 90–98 % yield following an extractive procedure and chromatography on silica gel. The competitive protection reaction between aldehyde and ketone with ethane-1,2-dithiol afforded the protected derivatives of benzaldehyde and acetophenone with 92 % and 8 % yields, respectively, indicating some selectivity.  相似文献   
62.
The interaction of ethylene carbonate (EC) with Si surfaces is studied by density functional theory. The results show a strong structure sensitivity in the adsorption of EC on Si surfaces. While the adsorbed EC molecule readily decomposes on the Li/Si(111) surface, it does not dissociate on the Li/Si(100) and Li/Si(110) surfaces. On Si(111), the O atom at the top of EC is detached from the EC molecule and binds to the Li adatom, forming Li?O molecules. The mechanism of EC decomposition is the transfer of 2.4 electrons from the surface to the EC molecule, as well as the formation of a covalent bond between the Li adatom and the EC molecule. This result shows that in lithium‐ion batteries with Si anodes, dissociation of the solvent and formation of a solid electrolyte interphase layer start as soon as the Li atoms cover the anode surface.  相似文献   
63.
A novel method for preconcentration is described for chromium speciation at microgram per liter to sub-microgram per liter levels. It is based on selective complex formation of both Cr(VI) and Cr(III) followed by dispersive liquid–liquid microextraction and determination by microsample introduction-flame atomic absorption spectrometry. Effects influencing complex formation and extraction (such as pH, temperature, time, solvent, salinity and the amount of chelating agent) have been optimized. Enrichment factors up to 275 and 262 were obtained for Cr(VI) and total Cr, respectively. The calibration graph is linear from 0.3 to 20 µg L?1, and detection limits are 0.07 and 0.08 µg L?1 for Cr(VI) and total Cr, respectively. Relative standard deviations (RSDs) were obtained to be 2.0% for Cr(VI) and 2.6% for total Cr (n?=?7).  相似文献   
64.
The proofs of Kleene, Chaitin and Boolos for Gödel's First Incompleteness Theorem are studied from the perspectives of constructivity and the Rosser property. A proof of the incompleteness theorem has the Rosser property when the independence of the true but unprovable sentence can be shown by assuming only the (simple) consistency of the theory. It is known that Gödel's own proof for his incompleteness theorem does not have the Rosser property, and we show that neither do Kleene's or Boolos' proofs. However, we show that a variant of Chaitin's proof can have the Rosser property. The proofs of Gödel, Rosser and Kleene are constructive in the sense that they explicitly construct, by algorithmic ways, the independent sentence(s) from the theory. We show that the proofs of Chaitin and Boolos are not constructive, and they prove only the mere existence of the independent sentences.  相似文献   
65.
The preparation and electrochemical characterization of glassy carbon electrodes modified with plumbagin were investigated by employing cyclic voltammetry, chronoamperometry and rotating disc electrode techniques. The cyclic voltammograms of the electroreduction of oxygen showed an enhanced current peak at approximately −0.289 V in air-saturated phosphate buffer pH = 7 and scan rate 10 mV s−1. The thermodynamic and kinetic parameters of the reduction of oxygen at glassy carbon have been evaluated using cyclic voltammetry. The experimental parameters were optimized and the mechanism of the catalytic process was discussed. The obtained values of E°′ (V vs. Ag/AgCl), the apparent electron transfer rate constant ks (s−1), heterogeneous rate constant for the reduction of O2 at the surface of the modified electrode kh (M−1 s−1) and α (charge transfer coefficient of oxygen) were as follows: −0.146, 23.4, 9.9 × 103 and 0.57, respectively. In addition, plumbagin exhibited strong catalytic activity toward the reduction of H2O2.  相似文献   
66.
Cisplatin resistance is one of the main limitations in the treatment of ovarian cancer, which is partly mediated by long noncoding RNAs (lncRNAs). H19 is a lncRNA involving in cisplatin resistance in cancers. Valproic acid (VPA) is a commonly used drug for clinical treatment of seizure disorders. In addition, this drug may display its effects through regulation of noncoding RNAs controlling gene expression. The aim of the present study was the investigation of VPA treatment effect on H19 expression in ovarian cancer cells and also the relation of the H19 levels with apoptosis and cisplatin resistance. Briefly, treatment with VPA not only led to significant increase in apoptosis rate, but also increased the cisplatin sensitivity of A2780/CP cells. We found that following VPA treatment, the expression of H19 and EZH2 decreased, but the expression of p21 and PTEN increased significantly. To investigate the involvement of H19 in VPA-induced apoptosis and cisplatin sensitivity, H19 was inhibited by a specific siRNA. Our results demonstrate that H19 knockdown by siRNA induced apoptosis and sensitized the A2780/CP cells to cisplatin-induced cytotoxicity. These data indicated that VPA negatively regulates the expression of H19 in ovarian cancer cells, which subsequently leads to apoptosis induction, cell proliferation inhibition, and overwhelming to cisplatin resistance. The implication of H19→EZH2→p21/PTEN pathway by VPA treatment suggests that we could repurpose an old drug, valproic acid, as an effective drug for treatment of ovarian cancer in the future.  相似文献   
67.
Three strategies for placing molecules in designated regions of mesostructured thin films made by the sol-gel dip-coating technique are demonstrated. These strategies all involve one-step syntheses where all of the components are present in the sol from which the substrate is pulled. Silicate films templated by ionic surfactants contain three spatially-separated regions: a silicate framework, an organic region formed by the hydrocarbon tails of the surfactants, and an intervening ionic interface formed by the charged surfactant head groups. The first method exploits lipophilic interactions between the molecule and the micelle to place it in the organic region. The second method uses chemical bonding of multiple trialkoxysilane groups in a three dimensional array on the molecule to place it in the silica framework. The third method uses multiple functionality at opposite sides of the molecule to enable it to span two regions. Luminescent molecules are used, and spectroscopy monitors the formation.  相似文献   
68.
Faceting is a form of self-assembly at the nanometre-scale on adsorbate-covered single-crystal surfaces, occurring when an initially planar surface converts to a "hill and valley" structure, exposing new crystal faces of nanometre-scale dimensions. Planar metal surfaces that are rough on the atomic scale, such as bcc W(111), fcc Ir(210) and hcp Re(1231), are morphologically unstable when covered by monolayer films of oxygen, or by certain other gases or metals, becoming "nanotextured" when heated to temperatures above approximately 700 K. Faceting is driven by surface thermodynamics (anisotropy of surface free energy) but controlled by kinetics (diffusion, nucleation). Surfaces can spontaneously rearrange to minimize their total surface energy (by developing facets), even if this involves an increase in surface area. In this critical review, we discuss the structural and electronic properties of such surfaces, and first principles calculations are compared with experimental observations. The utility of faceted surfaces in studies of structure sensitive reactions (e.g., CO oxidation, ammonia decomposition) and as templates for growth of metallic nanostructures is explored (122 references).  相似文献   
69.
Scaling behavior of one‐dimensional (1D) and two‐dimensional (2D) polymers in dilute solution is discussed with the goal of stimulating experimental work by chemists, physicists, and material scientists in the emerging field of 2D polymers. The arguments are based on renormalization‐group theory, which is explained for a general audience. Many ideas and methods successfully applied to 1D polymers are found not to work if one goes to 2D polymers. The role of the various states exhibiting universal behavior is turned upside down. It is expected that solubility will be a serious challenge for 2D polymers. Therefore, given the crucial importance of solutions in characterization and processing, synthetic concepts are proposed that allow the local bending rigidity and the molar mass to be tuned and the long‐range interactions to be engineered, all with the goal of preventing the polymer from falling into flat or compact states.

  相似文献   

70.
A new polymer nanocomposite membrane based on Nafion and functionalized carbon nanotubes (CNTs) was developed for proton exchange membrane fuel cell (PEMFC) applications. Histidine, an imidazole-based amino acid, was used for modifying the surface of CNTs. The modification of CNTs was characterized by means of Fourier transform infrared spectroscopy (FTIR) and their Zeta potential. The imidazole groups, due to forming and breaking of hydrogen bonding, can facilitate proton transport across the polymer matrix by the Grotthuss mechanism. The final structure of the Nafion/CNT nanocomposites was investigated by small angle X-ray scattering (SAXS). The results confirm that the transport properties of the fabricated new membranes were significantly improved in comparison with unmodified and conventional Nafion® membranes. The power density of the imidazole-CNT (Im-CNT) Nafion® composite membranes was about three times more than Nafion® membranes. Also, the experimental results showed that the proton conductivity for the conventional Nafion® membranes decreased over 100°C but the conductivity for the Nafion®/Im-CNT remained at a nearly constant value above 100°C up to 120°C. Thus, the nanocomposite based on Nafion/imidazole functionalized CNT can be considered as an anhydrous PEMFC membrane for high-temperature applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号