首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1246篇
  免费   45篇
  国内免费   22篇
化学   858篇
晶体学   30篇
力学   38篇
数学   61篇
物理学   326篇
  2024年   7篇
  2023年   12篇
  2022年   23篇
  2021年   111篇
  2020年   39篇
  2019年   47篇
  2018年   70篇
  2017年   45篇
  2016年   75篇
  2015年   62篇
  2014年   70篇
  2013年   100篇
  2012年   126篇
  2011年   131篇
  2010年   87篇
  2009年   60篇
  2008年   39篇
  2007年   36篇
  2006年   28篇
  2005年   21篇
  2004年   8篇
  2003年   11篇
  2002年   15篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1997年   2篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1982年   2篇
  1980年   3篇
  1977年   2篇
  1975年   5篇
  1973年   2篇
  1971年   2篇
  1969年   2篇
  1961年   1篇
  1954年   1篇
  1936年   1篇
  1935年   1篇
  1933年   1篇
排序方式: 共有1313条查询结果,搜索用时 421 毫秒
111.
The aim of this study was to develop cellulose nanofibers with hydrophobic surface characteristics using chemical modification. Kenaf fibers were modified using acetic anhydride and cellulose nanofibers were isolated from the acetylated kenaf using mechanical isolation methods. Fourier transform infrared spectroscopy (FTIR) indicated acetylation of the hydroxyl groups of cellulose. The study of the dispersion demonstrated that acetylated cellulose nanofibers formed stable, well-dispersed suspensions in both acetone and ethanol. The contact angle measurements showed that the surface characteristics of nanofibers were changed from hydrophilic to more hydrophobic when acetylated. The microscopy study showed that the acetylation caused a swelling of the kenaf fiber cell wall and that the diameters of isolated nanofibers were between 5 and 50 nm. X-ray analysis showed that the acetylation process reduced the crystallinity of the fibers, whereas mechanical isolation increased it. The method used provides a novel processing route for producing cellulose nanofibers with hydrophobic surfaces.  相似文献   
112.
Recently one of us derived the action of modified gravity consistent with the holographic and new-agegraphic dark energy. In this paper, we investigate the stability of the Lagrangians of the modified gravity as discussed in (Setare in Int J Mod Phys D 17:2219, 2008; Setare in Astrophys Space Sci 326:27, 2010). We also calculate the statefinder parameters which classify our dark energy model.  相似文献   
113.
Coir fiber from coconut husk is an important agricultural waste in Malaysia. Acoustic absorption coefficient of the fiber as a porous material is studied in this paper. Two types of fiber are investigated, fresh from wet market and industrial prepared mixed with binder. Moreover two analytical models, namely; Delany–Bazley and Biot–Allard are used for analysis. Experimental measurements in impedance tube are conducted to validate the analytical outcomes. Results show that fresh coir fiber has an average absorption coefficient of 0.8 at f > 1360 Hz and 20 mm thickness. Increasing the thickness is improved the sound absorption in lower frequencies, having the same average at f > 578 Hz and 45 mm thickness. Delany–Bazley technique can be used for both types of fiber while Biot–Allard method is compensated for the industrial prepared fiber considering the binder additive. This form generally shows poor acoustical absorption in low frequencies. Inevitably, fiber has to be mixed with additives in commercial use to enhance its characteristics such as stiffness, unti-fungus and flammability. Hence other approaches such as adding air gap or perforated plate should be used to improve the acoustical properties of industrial treated coir fiber.  相似文献   
114.
Motivated by recent works (Saridakis in Phys. Lett. B 660:138, 2008; Sheykhi in Int. J. Mod. Phys. D 19(3):305, 2010), we investigate the new agegraphic model of dark energy in the framework of RS II braneworld. We also include the case of variable gravitational constant G in our model. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the new agegraphic dark energy model in RS II braneworld cosmology including varying G.  相似文献   
115.
Laser beam forming has emerged as a new and very promising technique to form sheet metal by thermal residual stresses. The objective of this work is to investigate numerically the effect of rectangular beam geometries, with different transverse width to length aspect ratio, on laser bending process of thin metal sheets, which is dominated by buckling mechanism. In this paper, a comprehensive thermal and structural finite element (FE) analysis is conducted to investigate the effect that these laser beam geometries have on the process and on the final product characteristics. To achieve this, temperature distributions, deformations, plastic strains, stresses, and residual stresses produced by different beam geometries are compared. The results suggest that beam geometries play an important role in the resulting temperature distributions on the workpiece. Longer beam dimensions in the scanning direction (in relation to its lateral dimension) produce higher temperatures due to longer beam–material interaction time. This affects the bending direction and the magnitude of the bending angles. Higher temperatures produce more plastic strains and hence higher deformation. This shows that the temperature-dependent yield stress plays a more dominant role in the deformation of the plate than the spread of the beam in the transverse direction. Also, longer beams have a tendency for the scanning line to curve away from its original position to form a concave shape. This is caused by buckling which develops tensile plastic strains along both ends of the scanning path. The buckling effect produces the opposite curve profile; convex along the tranverse direction and concave along the scanning path.  相似文献   
116.
Mg-doped ZnO nanoparticles were synthesized by a simple chemical method at low temperature with Mg:Zn atomic ratio from 0 to 7%. The synthesis process is based on the hydrolysis of zinc acetate dihydrate and magnesium acetate tetrahydrate were heated under refluxing at 65 °C using methanol as a solvent. X-ray diffraction analysis reveals that the Mg-doped ZnO crystallizes in a wurtzite structure with crystal size of 5–12 nm. These nanocrystals self-aggregated themselves into hollow spheres of size of 800–1100 nm. High resolution transmission electron microscopy images show that each sphere is made up of numerous nanoparticles of average diameter 5–11 nm. The XRD patterns, SEM and TEM micrographs of doping of Mg in ZnO confirmed the formation of hollow spheres indicating that the Mg2+ is successfully substituted into the ZnO host structure of the Zn2+ site. Furthermore, the UV–Vis spectra and photoluminescence (PL) spectra of the ZnO nanoparticles were also investigated. The band gap of the nanoparticles can be tuned in the range of 3.36–3.55 eV by the use of the dopants.  相似文献   
117.
We study the coupling of a tetraquark system to an exchanged meson-meson channel, using a pure gluonic theory based four-quark potential matrix model which is known to fit well a large number of data points for lattice simulations of different geometries of a four-quark system. We find that if this minimal-area-based potential matrix replaces the earlier used simple Gaussian form for the gluon field overlap factor f in its off-diagonal terms, the resulting T -matrix and phase shifts develop an angle dependence whose partial-wave analysis reveals D wave and higher angular-momentum components in it. In addition to the obvious implications of this result for the meson-meson scattering, this new feature indicates the possibility of orbital excitations influencing properties of meson-meson molecules through a polarization potential. We have used a formalism of the resonating group method, treated kinetic energy and overlap matrices on model of the potential matrix, but decoupled the resulting complicated integral equations through the Born approximation. In this exploratory study we have used a quadratic confinement and not included the spin dependence; we also used the approximation of equal constituent quark masses.  相似文献   
118.
Raman and Fourier transform infrared (FTIR) spectroscopies have been utilized to measure long-wavelength optical lattice vibrations of high-quality quaternary AlxInyGa1−x−yN thin films at room temperature. The AlxInyGa1−x−yN films were grown on c-plane (0 0 0 1) sapphire substrates with AlN as buffer layers using plasma assisted molecular beam epitaxy (PA-MBE) technique with aluminum (Al) mole fraction x ranging from 0.0 to 0.2 and constant indium (In) mole fraction y=0.1. Pseudo unit cell (PUC) model was applied to investigate the phonons frequency, mode number, static dielectric constant, and high frequency dielectric constant of the AlxInyGa1−x−yN mixed crystals. The theoretical results were compared with the experimental results obtained from the quaternary samples by using Raman and FTIR spectroscopies. The experimental results indicated that the AlxInyGa1−x−yN alloy had two-mode behavior, which includes A1(LO), E1(TO), and E2(H). Thus, these results are in agreement with the theoretical results of PUC model, which also revealed a two-mode behavior for the quaternary nitride. We also obtained new values of E1(TO) and E2(H) for the quaternary nitride samples that have not yet been reported in the literature.  相似文献   
119.
Li-ion rechargeable batteries based on polymer electrolytes are of great interest for solid state electrochemical devices nowadays. Many studies have been carried out to improve the ionic conductivity of polymer electrolytes, which include polymer blending, incorporating plasticizers and filler additives in the electrolyte systems. This paper describes the effects of incorporating nano-sized MnO2 filler on the ionic conductivity enhancement of a plasticized polymer blend PMMA–PEO–LiClO4–EC electrolyte system. The maximum conductivity achieved is within the range of 10−3 S cm−1 by optimizing the composition of the polymers, salts, plasticizer, and filler. The temperature dependence of the polymer conductivity obeys the VTF relationship. DSC and XRD studies are carried out to clarify the complex formation between the polymers, salts, and plasticizer.  相似文献   
120.
In this paper, we explored the conservation laws of cylindrically symmetric non-static space–times by using direct integration technique. This classification also covers non-static plane symmetric space–times, static cylindrically symmetric space–times and plane symmetric static space–times. In this paper, we will only present the results of non-static cylindrically symmetric and non-static plane symmetric space–times. The results of static cylindrically symmetric space–times and plane static space–times can be found in Shabbir and Khan (Mod Phys Lett A 25:525, 2010). It turns out that the non-static cylindrically symmetric space–times admit four, five, or seven conservation laws. It is important to note that the above space–times admit at least one or at the most four extra conservation laws.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号