首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20306篇
  免费   3424篇
  国内免费   2381篇
化学   14230篇
晶体学   208篇
力学   1485篇
综合类   197篇
数学   2318篇
物理学   7673篇
  2024年   47篇
  2023年   385篇
  2022年   499篇
  2021年   690篇
  2020年   813篇
  2019年   782篇
  2018年   656篇
  2017年   558篇
  2016年   944篇
  2015年   963篇
  2014年   1119篇
  2013年   1481篇
  2012年   1758篇
  2011年   1962篇
  2010年   1247篇
  2009年   1191篇
  2008年   1218篇
  2007年   1127篇
  2006年   1118篇
  2005年   929篇
  2004年   831篇
  2003年   613篇
  2002年   571篇
  2001年   504篇
  2000年   455篇
  1999年   432篇
  1998年   380篇
  1997年   324篇
  1996年   335篇
  1995年   319篇
  1994年   299篇
  1993年   232篇
  1992年   247篇
  1991年   205篇
  1990年   180篇
  1989年   152篇
  1988年   91篇
  1987年   89篇
  1986年   75篇
  1985年   75篇
  1984年   42篇
  1983年   44篇
  1982年   37篇
  1981年   22篇
  1980年   15篇
  1979年   8篇
  1977年   5篇
  1975年   6篇
  1969年   4篇
  1957年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
In this paper, a facile and effective method is introduced to prepare palladium electrocatalysts for the oxidation of ethanol in alkaline media. According to the transmission electron microscopy measurement, the as-prepared Pd nanoparticles with the average particle size of 2.5 nm are evenly deposited on the surface of the multi-wall carbon nanotubes by using 1,3-bis(diphenylphosphino) propane as a special additive. Electrochemical measurements demonstrate that the as-prepared catalyst exhibits good electrocatalytic activity and stability for the electrooxidation of ethanol.  相似文献   
953.
基于量子限域效应的新型太阳电池——量子点敏化太阳电池(QD-SSCs),由于其最大理论转化效率超过了传统的Shockley-Queisser极限效率,已经成为目前最具研究潜力的太阳电池之一。本文综述了近几年来QD-SSCs领域的研究进展,主要从半导体氧化物纳米材料,特别是其低维纳米结构下的特殊性能;金属硫族化合物纳米晶;电解质;对电极等几个方面评述了电池材料的研究进展。另外,从量子点材料的制备和组装方面简述了目前电池光阳极的研究情况,并介绍了提高量子点光敏化性能的几个新途径。最后,从开路电压和短路电流角度分析了影响电池性能的几个关键因素,并对QD-SSCs今后的发展进行了展望。  相似文献   
954.
An electrochemical aptasensor was developed for sensitive and specific detection of thrombin by combining homogenous recognition strategy and gold nanoparticles (AuNPs) amplification. Streptavidin‐alkaline phosphatase was used as reporter molecule. Compared with the traditional hairpin aptasensor monitoring the distance of the redox molecule from the electrode surface, the proposed aptasensor successfully overcome the limitations of distance and improved the stability and high affinity of the aptamer hairpin through homogenous recognition, which enhanced the sensitivity and selectivity of the sensors effectively. Additionally, AuNPs were employed to increase the active area and conductivity of the electrode, thus, improving the sensitivity of the aptasensor. As a result, the designed thrombin detection sensor obtained a lower detection limit of 0.52 pM in buffer and 6.9 pM in blood serum.  相似文献   
955.
A poly(4‐bromoaniline) (PBA) film is electrochemically synthesized on a gold electrode for the recognition of amino acids enantiomers. Scanning electron microscopy measurements show that the porous PBA films are made up of nano‐ribbons. At the PBA modified Au electrode differential pulse voltammograms of L ‐ and D ‐glutamic acids not only have very different current densities, but also produce different waveforms, providing an intuitive way to differentiate the two chiral molecules. Similar results are obtained in analyzing L ‐ and D ‐aspartic acids. Control experiments suggest that the observed sensing behavior arises from synergistic interactions between Au and the PBA film, where polymerization at the meta‐position creates a steric structure needed for differentiating chiral molecules.  相似文献   
956.
In this work a partially reduced graphene oxide (p‐RGO) modified carbon ionic liquid electrode (CILE) was prepared as the platform to fabricate an electrochemical DNA sensor, which was used for the sensitive detection of target ssDNA sequence related to transgenic soybean A2704‐12 sequence. The CILE was fabricated by using 1‐butylpyridinium hexafluorophosphate as the binder and then p‐RGO was deposited on the surface of CILE by controlling the electroreduction conditions. NH2 modified ssDNA probe sequences were immobilized on the electrode surface via covalent bonds between the unreduced oxygen groups on the p‐RGO surface and the amine group at the 5′‐end of ssDNA, which was denoted as ssDNA/p‐RGO/CILE and further used to hybridize with the target ssDNA sequence. Methylene blue (MB) was used as electrochemical indicator to monitor the DNA hybridization. The reduction peak current of MB after hybridization was proportional to the concentration of target A2704‐12 ssDNA sequences in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 2.9×10?13 mol/L (3σ). The electrochemical DNA biosensor was further used for the detection of PCR products of transgenic soybean with satisfactory results.  相似文献   
957.
Conventional electrospray ionization mass spectrometry (ESI-MS) uses a capillary for sample loading and ionization. Along with the development of ambient ionization techniques, ESI-MS using noncapillary emitters has attracted more interest in recent years. Following our recent report on ESI-MS using wooden tips (Anal. Chem. 83, 8201–8207 (2011)), the technique was further investigated and extended in this study. Our results revealed that the wooden tips could serve as a chromatographic column for separation of sample components. Sequential and exhaustive ionization was observed for proteins and salts on wooden tips with salts ionized sooner and proteins later. Nonconductive materials that contain microchannels/pores could be used as tips for ESI-MS analysis with sample solutions loaded to the sharp-ends only, since rapid diffusion of sample solutions by capillary action would enable the tips to become conductive. Tips of inert materials such as bamboo, fabrics, and sponge could be used for sample loading and ionization, while samples such as tissue, mushroom, and bone could form tips to induce ionization for direct analysis with application of a high voltage.
Figure  相似文献   
958.
The electrochemical behavior of dopamine was examined under redox cycling conditions in the presence and absence of a high concentration of the interferent ascorbic acid at a coplanar, microelectrode array where the area of the generator electrodes was larger than that of the collector electrodes. Redox cycling converts a redox species between its oxidized and reduced forms by application of suitable potentials on a set of closely located generator and collector electrodes. It allows signal amplification and discrimination between species that undergo reversible and irreversible electron transfer. Microfabrication was used to produce 18 individually addressable, 4-μm-wide gold band electrodes, 2 mm long, contained in an array having an interelectrode spacing of 4 μm. Because the array electrodes are individually addressable, each can be selectively biased to produce an overall optimal electrochemical response. Four adjacent microbands were shorted together to serve as the collector, and were flanked on each side by seven microbands shorted as the generator (a ratio of 1:3.5 of electroactive area, respectively). This configuration achieved a detection limit of 0.454?±?0.026 μM dopamine at the collector in the presence of 100 μM ascorbic acid in artificial cerebrospinal fluid buffer, concentrations that are consistent with physiological levels. Enhancement by surface modification of the microelectrode array to achieve this detection limit was unnecessary. The results suggest that the redox cycling method may be suitable for in vivo quantification of transients and basal levels of dopamine in the brain without background subtraction.
Figure 1
Microelectrode array chip design and assignment of electrodes used for determination of dopamine (DA) in the presence of large excess of ascorbic acid (AA) by redox cycling. Analytes (DA and AA) are oxidized at the generator electrodes to form dopamine-o-quinone (DAQ) and dehydroascorbic acid (AAo) which diffuse to the nearest collector electrodes. DA is selectively detected at the collector electrodes, because DAQ can be reduced there, but AAo hydrolyzes to a nonelectroactive form prior to arrival  相似文献   
959.
Extraction of phosphopeptides from rather complex biological samples has been a tough issue for deep and comprehensive investigation into phosphoproteomes. In this paper, we present a series of Ti-doped mesoporous silica (Ti-MPS) materials with tunable composition and controllable morphology for highly efficient enrichment of phosphopeptides. By altering the molar ratio of silicon to titanium (Si/Ti) in the precursor, the external morphology, Ti content, internal long-rang order, and surface area of Ti-MPS were all modulated accordingly with certain regularity. Tryptic digests of standard phosphoprotein α- and β-casein were employed to assess the phosphopeptide enrichment capability of Ti-MPS series. At the Si/Ti molar ratio of 8:1, the optimum enrichment performance with admirable sensitivity and capacity was achieved. The detection limit for β-casein could reach 10 fmol, and 15 phosphopeptides from the digest of α-casein were resolved in the spectrum after enrichment, both superior to the behavior of commercial TiO2 materials. More significantly, for the digest of human placenta mitochondria, 396 phosphopeptides and 298 phosphoproteins were definitely detected and identified after enrichment with optimized Ti-MPS material, demonstrating its remarkable applicability for untouched phosphoproteomes. In addition, this research also opened up a universal pathway to construct a composition-tunable functional material in pursuit of the maximum performance in applications.
Figure
From human placenta mitochondria to MS  相似文献   
960.
Four-armed amphiphilic block copolymers polystyrene-b-poly(N-isopropyl acrylamide) (PSt-b-PNIPAAM)4 were synthesized by atom transfer radical polymerization (ATRP) in two steps. Star narrow dispersed polystyrene, (PSt-Br)4, with controlled number-average molecular weight was firstly synthesized by ATRP of styrene (St) using pentaerythritol tetrakis (2-bromoisobutyrate) (4Bri-Bu) as four-armed initiator. Then, (PSt-b-PNIPAAM)4 was prepared using (PSt-Br)4 as macroinitiator by ATRP. The structures of (PSt-Br)4 and (PSt-b-PNIPAAM)4 were confirmed by characterization by nuclear magnetic resonance (1H NMR). The apparent viscosity of the four-armed (PSt-b-PNIPAAM)4 was significantly lower than that of the linear PSt-b-PNIPAAM with the same amount of repeat units of PSt and PNIPAAM. The self-assembly behavior of the four-armed amphiphilic block copolymers (PSt-b-PNIPAAM)4 in mixed solution (DMF/H2O) and the lower critical solution temperature (LCST) of the resulting micelles were investigated by scanning electron microscopy (SEM), dynamic light scattering (DLS) and UV-VIS spectroscopy. The results show that the size of the mono-dispersed spherical micelles decreased with the increment of the chain length of PNIPAAM in the block copolymers, while LCST increased.  相似文献   
[首页] « 上一页 [91] [92] [93] [94] [95] 96 [97] [98] [99] [100] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号