首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
化学   41篇
  2014年   2篇
  2012年   5篇
  2011年   4篇
  2008年   4篇
  2007年   4篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1992年   3篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
11.
The stabilities of the experimentally unknown azirinyl and diazirinyl cations are discussed on the basis of results from ab initio molecular orbital calculations.  相似文献   
12.
Activation energies, enthalpies, and entropies for the addition of phenylchlorocarbene to tetramethylethylene significantly decrease as the reaction solvent lengthens from n-pentane to n-octane to n-decane; additional decreases are minimal in n-pentadecane and n-heptadecane. Electronic structure calculations, employing a continuum solvent model, fail to reproduce the observations; instead, a qualitative model invoking solvent cage effects is proposed.  相似文献   
13.
The geometries and energies of beryllium clusters up to Be5 are examined using ab initio molecular orbital theory. Allowances are made for electron correlation with Møller—Plesset perturbation theory to fourth order. Correlation is found to have a dramatic effect on the relative energies of the several structures examined for Be4 and Be5. Furthermore, the effect of d-type basis functions on the correlation energy results in an increased binding energy for the clusters. Be2 is only weakly bound. For Be3, the best estimate of the binding energy is 6 kcal/mole for the singlet equilateral triangle. Be4 is tetrahedral in its ground state and the estimated binding is 56 kcal/mole. The best structure for Be5 is a singlet trigonal bipyramid, and the binding energy is 88 kcal/mole at the highest level of theory used.  相似文献   
14.
The pincer-ligated species (PCP)Ir (PCP = kappa3-C6H3-2,6-(CH2PtBu2)2) is found to promote dimerization of phenylacetylene to give the enyne complex (PCP)Ir(trans-1,4-phenyl-but-3-ene-1-yne). The mechanism of this reaction is found to proceed through three steps: (i) addition of the alkynyl C-H bond to iridium, (ii) insertion of a second phenylacetylene molecule into the resulting Ir-H bond, and (iii) vinyl-acetylide reductive elimination. Each of these steps has been investigated, by both experimental and computational (DFT) methods, to yield unexpected conclusions of general interest. (i) The product of alkynyl C-H addition, (PCP)Ir(CCPh)(H) (3), has been isolated and, in accord with experimental observations, is calculated to be 29 kcal/mol more stable than the analogous product of benzene C-H addition. (ii) Insertion of a second PhCCH molecule into the Ir-H bond of 3 proceeds rapidly, but with a 1,2-orientation. This orientation gives (PCP)Ir(CCPh)(CPh=CH2) (4) which would yield the 1,3-diphenyl-enyne if it were to undergo C-C elimination; however, the insertion is reversible, which represents the first example, to our knowledge, of simple beta-H elimination from a vinyl group to give a terminal hydride. The 2,1-insertion product (PCP)Ir(CCPh)(CH=CHPh) (6) forms more slowly, but unlike the 1,2 insertion product it undergoes C-C elimination to give the observed enyne. (iii) The failure of 4 to undergo C-C elimination is found to be general for (PCP)Ir(CCPh)(vinyl) complexes in which the vinyl group has an alpha-substituent. Thus, although C-C elimination relieves crowding, the reaction is inhibited by increased crowding. Density-functional theory (DFT) calculations support this surprising conclusion and offer a clear explanation. Alkynyl-vinyl bond formation in the C-C elimination transition state involves the vinyl group pi-system; this requires that the vinyl group must rotate (around the Ir-C bond) by ca. 90 degrees to achieve an appropriate orientation. This rotation is severely inhibited by steric crowding, particularly when the vinyl group bears an alpha-substituent.  相似文献   
15.
p-X-substituted phenylchlorocarbenes (X = NO(2), CF(3), Cl, H, Me, and MeO) form π-type complexes with trimethoxybenzene in pentane. The carbenes and complexes are in equilibrium, and logarithms of the measured equilibrium constants are well correlated by Hammett σ(p) constants with ρ = 2.48. The carbene complexes are characterized by UV-vis spectroscopy, and computational analysis is afforded by DFT calculations.  相似文献   
16.
Pentafluorophenylchlorocarbene, generated by laser flash photolysis (LFP) of pentafluorophenylchlorodiazirine, formed π-type complexes with 1,3,5-trimethoxybenzene in pentane. The carbene and carbene complexes were in equilibrium with K = 3.21 × 10(5) M(-1) at 294 K. From the temperature dependence of K, ΔH° = -10.2 kcal/mol, ΔS° = -9.5 eu, and ΔG° = -7.4 kcal/mol at 298 K. The carbene complexes were characterized by UV-vis spectroscopy and computational analysis.  相似文献   
17.
p-Nitrophenylchlorocarbene reacted reversibly with diethyl ether, di-n-propyl ether, or tetrahydrofuran (THF) to form O-ylides, which were visualized by their UV-visible spectroscopic signatures. Equilibrium constants (K(eq)) were determined spectroscopically and ranged from 0.10 M(-1) (di-n-propyl ether) to 7.5 M(-1) (THF) at 295 K. Studies of K(eq) as a function of temperature afforded ΔH(o), ΔS(o), and ΔG(o) for the di-n-propyl ether and THF/O-ylide equilibria. ΔH(o) was favorable for ylide formation, but ΔS(o) was quite negative, so that ΔG(o)s for the equilibria were small. Electronic structure calculations based on density functional theory provided structures, spectroscopic signatures, and energetics for the carbene/ether O-ylides.  相似文献   
18.
The efficient evaluation of polarizable molecular mechanics potentials on distributed memory parallel computers is discussed. The program executes at 7–10 Mflops/node on a 32-node CM-5 partition and is 19 times faster than comparable code running on a single-processor HP 9000/735. On the parallel computer, matrix inversion becomes a practical alternative to the commonly used iterative method for the calculation of induced dipole moments. The former method is useful in cases such as free-energy perturbation (FEP) simulations, which require highly accurate induced dipole moments. Matrix inversion is performed 110 times faster on the CM-5 than on the HP. We show that the accuracy which is needed for FEP calculations with polarization can be obtained by either matrix inversion or by performing a large number of iteration cycles to satisfy convergence tolerances that are less than 10?6 D. © 1995 by John Wiley & Sons, Inc.  相似文献   
19.
Pincer complexes of the type ((R)PCP)IrH(2), where ((R)PCP)Ir is [eta(3)-2,6-(R(2)PCH(2))(2)C(6)H(3)]Ir, are the most effective catalysts reported to date for the "acceptorless" dehydrogenation of alkanes to yield alkenes and free H(2). We calculate (DFT/B3LYP) that associative (A) reactions of ((Me)PCP)IrH(2) with model linear (propane, n-PrH) and cyclic (cyclohexane, CyH) alkanes may proceed via classical Ir(V) and nonclassical Ir(III)(eta(2)-H(2)) intermediates. A dissociative (D) pathway proceeds via initial loss of H(2), followed by C-H addition to ((Me)PCP)Ir. Although a slightly higher energy barrier (DeltaE(+ +)) is computed for the D pathway, the calculated free-energy barrier (DeltaG(+ +)) for the D pathway is significantly lower than that of the A pathway. Under standard thermodynamic conditions (STP), C-H addition via the D pathway has DeltaG(o)(+ +) = 36.3 kcal/mol for CyH (35.1 kcal/mol for n-PrH). However, acceptorless dehydrogenation of alkanes is thermodynamically impossible at STP. At conditions under which acceptorless dehydrogenation is thermodynamically possible (for example, T = 150 degrees C and P(H)2 = 1.0 x 10(-7) atm), DeltaG(+ +) for C-H addition to ((Me)PCP)Ir (plus a molecule of free H(2)) is very low (17.5 kcal/mol for CyH, 16.7 kcal/mol for n-PrH). Under these conditions, the rate-determining step for the D pathway is the loss of H(2) from ((Me)PCP)IrH(2) with DeltaG(D)(+ +) approximately DeltaH(D)(+ +) = 27.2 kcal/mol. For CyH, the calculated DeltaG(o)(+ +) for C-H addition to ((Me)PCP)IrH(2) on the A pathway is 35.2 kcal/mol (32.7 kcal/mol for n-PrH). At catalytic conditions, the calculated free energies of C-H addition are 31.3 and 33.7 kcal/mol for CyH and n-PrH addition, respectively. Elimination of H(2) from the resulting "seven-coordinate" Ir-species must proceed with an activation enthalpy at least as large as the enthalpy change of the elimination step itself (DeltaH approximately 11-13 kcal/mol), and with a small entropy of activation. The free energy of activation for H(2) elimination (DeltaG(A)(+ +)) is hence found to be greater than ca. 36 kcal/mol for both CyH and n-PrH under catalytic conditions. The overall free-energy barrier of the A pathway is calculated to be higher than that of the D pathway by ca. 9 kcal/mol. Reversible C-H(D) addition to ((R)PCP)IrH(2) is predicted to lead to H/D exchange, because the barriers for hydride scrambling are extremely low in the "seven-coordinate" polyhydrides. In agreement with calculation, H/D exchange is observed experimentally for several deuteriohydrocarbons with the following order of rates: C(6)D(6) > mesitylene-d(12) > n-decane-d(22) > cyclohexane-d(12). Because H/D exchange in cyclohexane-d(12) solution is not observed even after 1 week at 180 degrees C, we estimate that the experimental barrier to cyclohexane C-D addition is greater than 36.4 kcal/mol. This value is considerably greater than the experimental barrier for the full catalytic dehydrogenation cycle for cycloalkanes (ca. 31 kcal/mol). Thus, the experimental evidence, in agreement with calculation, strongly indicates that the A pathway is not kinetically viable as a segment of the "acceptorless" dehydrogenation cycle.  相似文献   
20.
At high levels of ab initio theory (6-31G*//4-31G), the most stable C4H isomer is indicated to be the nonplanar cyclobutadiene dication ( 1a ); the planar form, 1b , is indicated to be 7.5 kcal/mol less stable. The second most stable C4H isomer, the methylenecyclopropene dication, is indicated to prefer the perpendicular ( 2a ) over the planar ( 2b ) arrangement by 7 kcal/mol. The “anti van't Hoff” cyclo-(HB)2C?CH2 system ( 4 ), isoelectronic with 2 , also prefers the perpendicular conformation ( 4a ), and retains the C?C double bond. The linear butatriene dication ( 3 ) is the least stable C4H species investigated. The perpendicular (D2d) arrangement ( 3a ), permitting double allyl cationlike conjugation, is preferred over the planar D2h form ( 3b ) by 26 kcal/mol. The heat of formation of the most stable form of C4H, 1a , is estimated to be 623–640 kcal/mol. This species should be thermodynamically stable toward dissociation into smaller charged fragments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号