首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   3篇
  国内免费   1篇
化学   47篇
晶体学   1篇
数学   2篇
物理学   20篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   10篇
  2011年   12篇
  2010年   7篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  1999年   1篇
  1991年   1篇
  1986年   1篇
  1974年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
11.
In this article, a zirconia-based nano-catalyst (Nano-ZrO2), with intermolecular C-N bond formation for the synthesis of various benzimidazole-fused heterocycles in a concise method is reported. The robustness of this reaction is demonstrated by the synthesis of a series of benzimidazole drugs in a one-pot method. All synthesized materials were characterized using 1HNMR, 13CNMR, and LC-MS spectroscopy as well as microanalysis data. Furthermore, the synthesis of nano-ZrO2 was processed using a standard hydrothermal technique in pure form. The crystal structure of nano-ZrO2 and phase purity were studied, and the crystallite size was calculated from XRD analysis using the Debye–Scherrer equation. Furthermore, the antimicrobial activity of the synthesized benzimidazole drugs was evaluated in terms of Gram-positive, Gram-negative, and antifungal activity, and the results were satisfactory.  相似文献   
12.
Functional electrode materials play an increasingly important role in the advancement of energy conversion and storage technologies used in batteries, electrolyzers, supercapacitors, fuel cells, and other electrochemical devices. To address the problems related to accelerating demand for the so-called renewable energy, which are simultaneously coupled with environmental concerns, new generations of materials, engineering methodologies, and innovative techniques are necessary. Among many synthetic methods, microwave-assisted synthesis becomes nowadays a very popular approach to efficiently control both the composition and morphology of solids. In this review, we focus on its applications to create new advanced energy electrode materials.
Graphical abstract A schematic illustration of microwave-assisted synthesis process for making functional electrode materials
  相似文献   
13.
In this study, a new hierarchical nanostructure that consists of zinc oxide (ZnO) was produced by the electrospinning process followed by a hydrothermal technique. First, electrospinning of a colloidal solution that consisted of zinc nanoparticles, zinc acetate dihydrate and poly(vinyl alcohol) was performed to produce polymeric nanofibers embedding solid nanoparticles. Calcination of the obtained electrospun nanofiber mats in air at 500 °C for 90 min produced pure ZnO nanofibers with rough surfaces. The rough surface strongly enhanced outgrowing of ZnO nanobranches when a specific hydrothermal technique was used. Methylene blue dihydrate was used to check the photocatalytic ability of the produced nanostructures. The results indicated that the hierarchical nanostructure had a better performance than the other form.  相似文献   
14.
The performance of matrix assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF) of bacterial proteins strongly depends on sample preparation. It is found that the mass spectral profiles obtained from direct MALDI-TOF MS of the protein extracts are much weaker for individual bacterial cells than compared to those prepared by the Tris-EDTA buffer approach (TEBA). Characteristic mass spectral peaks were observed in the mass range from 3,000 to 15,000?Da. The mass peaks reported earlier and claimed to serve as species-specific biomarkers are consistently found here as well. Mass peaks at m/z of 3636, 5466, 5750, 6315, 6547, 7274, 9192, and 9742 are found for Escherichia coli studied and assigned as specific biomarkers. Similarly, specific mass peaks have been identified at m/z 5443, 7270, 7724, and 9888 for Bacillus subtilis, and at 3603, 5496, 6800, 8858 and 9531 for Serratia marcescens. The detection limits for the three target bacteria range from 2.4?×?105 to 3.3?×?105?cfu·mL-1. We conclude that the TE buffer approach can produce reliable data for rapid classification, high-resolution and highly sensitive detection of bacteria.
Fig
The Tris-EDTA buffer approach is a sample preparation technique before MALDI-TOF MS analysis. In this study, the bacterial cells were treated with Tris-EDTA buffer for high resolution MALDI-TOF mass spectrometry. It is important to note that mass spectral profiles obtained from direct MALDI-TOF MS of protein extracts are much weaker for individual bacterial cells than compared to those prepared by the Tris-EDTA buffer approach. The current approach is very simple and rapid for high sensitive detection of bacteria.  相似文献   
15.
New [1,2,4‐oxadiazolyl]methyl‐3H‐[1,2,3]triazolo[4,5‐d]pyrimidin derivatives were synthesized starting from N′‐Hydroxy‐1‐naphthimidamide. The N‐substituted acyclic nucleoside analogs as well as the substituted glycosides were also prepared by reaction with the corresponding reagents. The antimicrobial results indicated that most of the tested compounds exhibited moderate to high antimicrobial activity whereas few compounds were found to exhibit little or no activity against the tested microorganisms.  相似文献   
16.
Journal of Radioanalytical and Nuclear Chemistry - The structural and optical properties of the neutron irradiated PMMA doped by 5 wt% RhB have been investigated. Fourier transform infrared...  相似文献   
17.
Saturated absorption spectroscopy is performed on the acetylene nu(1) + nu(3) band near 1532 nm inside photonic bandgap fibers of small (approximately 10 microm) and large (approximately 20 microm) core diameters. The observed linewidths are narrower in the 20 microm fiber and vary from 20 to 40 MHz depending on pressure and power. Variations in the background light transmission, attributed by others to surface modes, are significantly reduced in the 20 microm fiber. The optimum signal for use as a frequency reference in a 0.8 m long, 20 microm diameter fiber is found to occur at about 0.5 torr for 30 mW of pump power. The saturation power is found by modeling the propagation and attenuation of light inside the fiber.  相似文献   
18.
Phytochemical investigation of the galls of Pistacia integerrima Stewart (Pistaceaceae) yielded three new phytoconstituents characterized as n-decan-3′-ol-yl-n-eicosanoate, n-octadecan-9,11-diol-7-one and 3-oxo-9β-lanost-1,20(22)-dien-26-oic acid along with the known compound β-sitosterol. The structures of these phytoconstituents have been elucidated on the basis of spectral data analysis and chemical reactions.  相似文献   
19.
Research on Chemical Intermediates - Among the reactive oxygen species, the superoxide anion radical (O 2 ·? ) has a fundamental role in several biological functions. Consequently, its...  相似文献   
20.
Hydrogels that can respond to multiple external stimuli represent the next generation of advanced functional biomaterials. Here, a series of multimodal hydrogels were synthesized that can contract and expand reversibly over several cycles while changing their mechanical properties in response to blue and red light, as well as heat (∼50 °C). The light-responsive behavior was achieved through a photoredox-based mechanism consisting of photoinduced electron transfer from a zinc porphyrin photocatalyst in its excited state to oligoviologen-based macrocrosslinkers, both of which were integrated into the hydrogel polymer network during gel formation. Orthogonal thermoresponsive properties were also realized by introducing N-isopropyl acrylamide (NIPAM) monomer simultaneously with hydroxyethyl acrylate (HEA) in the pre-gel mixture to produce a statistical 60 : 40 HEA : NIPAM polymer network. The resultant hydrogel actuators – crosslinked with either a styrenated viologen dimer (2V4+-St) or hexamer (6V12+-St) – were exposed to red or blue light, or heat, for up to 5 h, and their rate of contraction, as well as the corresponding changes in their physical properties (i.e., stiffness, tensile strength, Young''s modulus, etc.), were measured. The combined application of blue light and heat to the 6V12+-St-based hydrogels was also demonstrated, resulting in hydrogels with more than two-fold faster contraction kinetics and dramatically enhanced mechanical robustness when fully contracted. We envision that the reported materials and the corresponding methods of remotely manipulating the dynamic hydrogels may serve as a useful blueprint for future adaptive materials used in biomedical applications.

Orthogonal modes of activation in thermoresponsive hydrogel actuators using porphyrin-based visible light photoredox catalysis, viologen-based crosslinkers, and poly(N-isopropylacrylamide).  相似文献   
[首页] « 上一页 [1] 2 [3] [4] [5] [6] [7] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号