首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1494篇
  免费   80篇
  国内免费   41篇
化学   958篇
晶体学   19篇
力学   38篇
综合类   3篇
数学   212篇
物理学   385篇
  2023年   37篇
  2022年   26篇
  2021年   51篇
  2020年   45篇
  2019年   43篇
  2018年   46篇
  2017年   21篇
  2016年   48篇
  2015年   52篇
  2014年   49篇
  2013年   83篇
  2012年   77篇
  2011年   120篇
  2010年   49篇
  2009年   62篇
  2008年   87篇
  2007年   78篇
  2006年   63篇
  2005年   61篇
  2004年   56篇
  2003年   30篇
  2002年   31篇
  2001年   27篇
  2000年   28篇
  1999年   19篇
  1998年   15篇
  1997年   19篇
  1996年   14篇
  1995年   9篇
  1994年   10篇
  1993年   22篇
  1992年   9篇
  1991年   15篇
  1990年   12篇
  1989年   7篇
  1988年   10篇
  1987年   14篇
  1986年   8篇
  1985年   10篇
  1984年   14篇
  1983年   9篇
  1982年   8篇
  1981年   9篇
  1980年   8篇
  1979年   9篇
  1978年   11篇
  1977年   8篇
  1976年   8篇
  1973年   6篇
  1972年   5篇
排序方式: 共有1615条查询结果,搜索用时 353 毫秒
41.
The photochemical interaction of 193 nm light with polystyrene nanospheres is used to produce particles with a controlled size and morphology. Laser fluences from 0 to 0.14 J/cm2 at 10 and 50 Hz photofragment nearly monodisperse 110 nm spherical polystyrene particles. The size distributions before and after irradiation are measured with a scanning mobility particle sizer (SMPS), and the morphology of the irradiated particles is examined with a transmission electron microscope (TEM). The results show that the irradiated particles have a smaller mean diameter ( approximately 25 nm) and a number concentration more than an order of magnitude higher than nonirradiated particles. The particles are formed by nucleation of gas-phase species produced by photolytic decomposition of nanospheres. A nondimensional parameter, the photon-to-atom ratio (PAR), is used to interpret the laser-particle interaction energetics.  相似文献   
42.
以正丁醛和1,5-戊二醇为起始原料, 以不对称烯丙基化、改良的Julia成烯反应和Yamaguchi内酯化为关键步骤, 通过13步反应, 立体选择性地合成了具有植物毒性的天然十元内酯化合物Herbarumin Ⅲ(3)及其差向异构体22.  相似文献   
43.
酸性化合物在十二胺-N; N-二亚甲基膦酸改性氧化锆固定相上的分离;氧化锆;色谱固定相;十二胺-N; N-二亚甲基膦酸  相似文献   
44.
The 60-electron tetrahedral clusters W2Ir2(μ-L)(CO)85-C5H4Me)2 [L=dppe (2), dppf (3)] have been prepared from reaction between W2Ir2(CO)105-C5H4Me)2 (1) and the corresponding diphosphine in 52 and 66% yields, respectively. A structural study of 2 reveals that three edges of a WIr2 face are spanned by bridging carbonyls, that the iridium-ligated diphosphine coordinates diaxially and that the tungsten-bound methylcyclopentadienyls coordinate axially and apically with respect to the plane of bridging carbonyls. A structural study of 3 reveals that the dppf ligand bridges an Ir---Ir bond which is also spanned by a bridging carbonyl; tungsten-ligated methylcyclopentadienyl ligands and terminal carbonyls result in electronic asymmetry (17e and 19e iridium atoms) in the electron-precise cluster. Both clusters show two reversible one-electron oxidation processes and an irreversible two-electron reduction; the dppf-containing cluster 3 has a further, irreversible, one-electron oxidation process. UV–vis-NIR spectroelectrochemical studies of the 2→2+→22+ progression reveal the appearance of a low-energy transition on oxidation to 2+ which persists on further oxidation to 22+.  相似文献   
45.
The stoichiometric and catalytic activations of alkyl halides and acid chlorides by the unsatured Pd(3)(dppm)(3)(CO)(2+) cluster (Pd(3)(2+)) are investigated in detail. A series of alkyl halides (R-X; R = t-Bu, Et, Pr, Bu, allyl; X = Cl, Br, I) react slowly with Pd(3)(2+) to form the corresponding Pd(3)(X)(+) adduct and "R(+)". This activation can proceed much faster if it is electrochemically induced via the formation of the paramagnetic species Pd(3)(+). The latter is the first confidently identified paramagnetic Pd cluster. The kinetic constants extracted from the evolution of the UV-vis spectra for the thermal activation, as well as the amount of electricity to bring the activation to completion for the electrochemically induced reactions, correlate the relative C-X bond strength and the steric factors. The highly reactive "R(+)" species has been trapped using phenol to afford the corresponding ether. On the other hand, the acid chlorides react rapidly with Pd(3)(2+) where no induction is necessary. The analysis of the cyclic voltammograms (CV) establishes that a dissociative mechanism operates (RCOCl --> RCO(+) + Cl(-); R = t-Bu, Ph) prior to Cl(-) scavenging by the Pd(3)(2+) species. For the other acid chlorides (R = n-C(6)H(13), Me(2)CH, Et, Me, Pr), a second associative process (Pd(3)(2+) + RCOCl --> Pd(3)(2+.....)Cl(CO)(R)) is seen. Addition of Cu(NCMe)(4)(+) or Ag(+) leads to the abstraction of Cl(-) from Pd(3)(Cl)(+) to form Pd(3)(2+) and the insoluble MCl materials (M = Cu, Ag) allowing to regenerate the starting unsaturated cluster, where the precipitation of MX drives the reaction. By using a copper anode, the quasi-quantitative catalytic generation of the acylium ion ("RCO(+)") operates cleanly and rapidly. The trapping of "RCO(+)" with PF(6)(-) or BF(4)(-) leads to the corresponding acid fluorides and, with an alcohol (R'OH), to the corresponding ester catalytically, under mild conditions. Attempts were made to trap the key intermediates "Pd(3)(Cl)(+)...M(+)" (M(+) = Cu(+), Ag(+)), which was successfully performed for Pd(3)(ClAg)(2+), as characterized by (31)P NMR, IR, and FAB mass spectrometry. During the course of this investigation, the rare case of PF(6)(-) hydrolysis has been observed, where the product PF(2)O(2)(-) anion is observed in the complex Pd(3)(PF(2)O(2))(+), where the substrate is well-located inside the cavity formed by the dppm-Ph groups above the unsatured face of the Pd(3)(2+) center. This work shows that Pd(3)(2+) is a stronger Lewis acid in CH(2)Cl(2) and THF than AlCl(3), Ag(+), Cu(+), and Tl(+).  相似文献   
46.
Development of new or improved methods for the asymmetric preparation of chiral propargylic alcohols has gained considerable significance during the past years because they are useful building blocks for the synthesis of many biologically active compounds and natural products.[1] A series of chiral tridentate ligands were conveniently synthesized from amino acids with good yields (Scheme 1).[2] A preliminary study of the enantioselective alkynylation of benzaldehyde catalyzed by this chiral tridentate ligand was carried out and up to 83% ee of chiral propargyl alcohols was obtained (Table 1 ). A further investigation of the tridentate ligand is currently underway.  相似文献   
47.
48.
49.
We review the process of star formation, detailing the theories underlying the stability of molecular clouds and their collapse to protostars, and discussing the empirical evidence and models which inform them. We give emphasis to the role that the magnetic field plays in influencing the stability of molecular clouds and hence the star formation rate. The end result of star formation is a mass function which appears constant within our Galaxy. A relative abundance of low mass stars is observed over high mass stars and most of the stars that do form are found to exist as members of a binary system. The origin of binarity is reviewed as is the discovery, formation and observations of some of the lowest mass stars known, the brown dwarfs.  相似文献   
50.
K. Lucas  B. Moser 《Molecular physics》2013,111(6):1849-1857
A memory-function model is used to compute the velocity autocorrelation function and the self-diffusion coefficient of a dense Lennard-Jones fluid from the zero-time correlation functions of the molecular velocity and its first two time derivatives. It is shown that these zero-time correlation functions can be evaluated in terms of the radial distribution function and the pair potential only, i.e. without considering higher order correlation functions. Since molecular dynamics results are available for the radial distribution function as well as the velocity autocorrelation function and the self-diffusion coefficient, a rigorous test of the chosen memory function is possible. The agreement is reasonable, although generally not within the error bands of the molecular dynamics results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号